Geliştirilmiş Ticari Uçak Performansı için Uyarlanabilen Kanatçıkların Aerodinamik Analizi

Author:

KAYGAN Erdogan

Publisher

Journal of Aviation

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference1 articles.

1. [1] A. R. et al McGowan, “Recent Results from NASA’s Morphing Project,” in 9th International Symposium on Smart Structure and Materials, 2002, p. SPIE PaperNo.4698-11. [2] T. a. Weisshaar, “Morphing Aircraft Systems: Historical Perspectives and Future Challenges,” J. Aircr., vol. 50, no. 2, pp. 337–353, 2013. [3] D. McRuer and D. Graham, “Flight Control Century: Triumphs of the Systems Approach,” J. Guid. Control. Dyn., vol. 27, no. 2, pp. 161–173, 2004. [4] E. Wilson, “Nature photography,” Nature, vol. 82, no. 2100, pp. 371–372, 1910. [5] NASA, “21st Century Aerospace Vehicle, Morphing Airplane.” . [6] T. G. Ivanco, R. C. Scott, M. H. Love, S. Zink, and T. a. Weisshaar, “Validation of the Lockheed Martin morphing concept with wind tunnel testing,” vol. 23, p. 26, 2007. [7] S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, “A Review of Morphing Aircraft,” J. Intell. Mater. Syst. Struct., vol. 22, no. 9, pp. 823–877, Aug. 2011. [8] T. A. Weisshaar and T. H. E. M. Challenge, “Morphing Aircraft Technology – New Shapes for Aircraft Design,” 2006. [9] R. M. Ajaj, C. S. Beaverstock, and M. I. Friswell, “Morphing aircraft: The need for a new design philosophy,” Aerosp. Sci. Technol., vol. 49, no. December 2017, pp. 154–166, 2015. [10] E. Kaygan and C. Ulusoy, “Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft,” vol. 2, no. 2, pp. 77–86, 2018. [11] L. Prandtl, “Application of Modern Hydrodynamics to Aeronautics,” Naca, vol. 116, no. 116. 1923. [12] W. F. Phillips, N. R. Alley, and W. D. Goodrich, “Lifting-Line Analysis of Roll Control and Variable Twist,” J. Aircr., vol. 41, no. 5, pp. 1169–1176, 2004. [13] W. F. Phillips, S. R. Fugal, and R. E. Spall, “Minimizing Induced Drag with Wing Twist, Computational-Fluid-Dynamics Validation,” J. Aircr., vol. 43, no. 2, pp. 437–444, 2006. [14] D. Sahoo and C. Cesnik, “Roll maneuver control of UCAV wing using anisotropic piezoelectric actuators,” 43rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., no. April, pp. 1–11, 2002. [15] D. A. N. Iii, D. J. Inman, and C. Woolsey, “Design , Development , and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation by Design , Development , and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation,” 2006. [16] H. Garcia, M. Abdulrahim, and R. Lind, “Roll Control for a Micro Air Vehicle Using Active Wing Morphing,” in AIAA Guidance, Navigation and Control Conference (Austin, TX), 2003, pp. 1–12. [17] M. Majji, “Design of a Morphing Wing : Modeling and Experiments,” Am. Inst. Aeronaut. Astronaut., p. 9, 2008. [18] R. Vos, Z. Gurdal, and M. Abdalla, “Mechanism for Warp-Controlled Twist of a Morphing Wing,” J. Aircr., vol. 47, no. 2, pp. 450–457, Mar. 2010. [19] H. Lv, J. Leng, and S. Du, “A Survey of Adaptive Materials and Structures Research in China,” in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009, no. May, pp. 1–8. [20] a. Y. N. Sofla, D. M. Elzey, and H. N. G. Wadley, “Two-way Antagonistic Shape Actuation Based on the One-way Shape Memory Effect,” J. Intell. Mater. Syst. Struct., vol. 19, no. 9, pp. 1017–1027, 2008. [21] D. M. Elzey, A. Y. N. Sofla, and H. N. G. Wadley, “A bio-inspired, high-authority actuator for shape morphing structures,” Proc. SPIE, vol. 5053, pp. 92–100, 2003. [22] B. K. Woods, O. Bilgen, and M. I. Friswell, “Wind tunnel testing of the fish bone active camber morphing concept,” J. Intell. Mater. Syst. Struct., vol. 25, no. 7, pp. 772–785, Feb. 2014. [23] R. Eppler, “Induced drag and winglets,” Aerosp. Sci. Technol., vol. 1, no. 1, pp. 3–15, 1997. [24] J. Guerrero, M. Sanguineti, and K. Wittkowski, “CFD Study of the Impact of Variable Cant Angle Winglets on Total Drag Reduction,” 2018. [25] N. M. Ursache, T. Melin, A. T. Isikveren, and M. I. Friswell, “Morphing Winglets for Aircraft Multi-phase Improvement,” 7th AIAA Aviat. Technol. Integr. Oper. Conf. ATIO May, no. September, pp. 18–20, 2007. [26] D. D. Smith, M. H. Lowenberg, D. P. Jones, M. I. Friswell, and S. Park, “COMPUTATIONAL AND EXPERIMENTAL ANALYSIS OF THE ACTIVE MORPHING WING CONCEPT,” 2012, pp. 1–9. [27] M. J. Smith, N. Komerath, R. Ames, O. Wong, and J.Pearson, “PERFORMANCE ANALYSIS OF A WING WITH MULTIPLE WINGLETS,” 2001. [28] a Beechook and J. Wang, “Aerodynamic Analysis of Variable Cant Angle Winglets for Improved Aircraft Performance,” no. September, pp. 13–14, 2013. [29] R. T. Whitcomb, “WIND-TUNNEL SUBSONIC MOUNTED APPROACH RESULTS SPEEDS FOR AND AT SELECTED WING-TIP WINGLETS NATIONAL AERONAUTICSAND SPACE ADMINISTRATION •,” Washington D. C., 1976. [30] R. Hallion, “NASA’s Contributions to Aeronautics: Aerodynamics, Structures, Propulsion, and Controls,” Washington, 2010. [31] P. Bourdin, A. Gatto, and M. I. Friswell, “Aircraft Control via Variable Cant-Angle Winglets,” Journal of Aircraft, vol. 45, no. 2. pp. 414–423, 2008. [32] P. Bourdin, A. Gatto, and M. I. Friswell, “Potential of Articulated Split Wingtips for Morphing-Based Control of a Flying Wing,” in 25th AIAA Applied Aerodynamics Conference, 2007, no. June, pp. 1–16. [33] a. Gatto, F. Mattioni, and M. I. Friswell, “Experimental Investigation of Bistable Winglets to Enhance Aircraft Wing Lift Takeoff Capability,” J. Aircr., vol. 46, no. 2, pp. 647–655, Mar. 2009. [34] E. Kaygan and A. Gatto, “Investigation of Adaptable Winglets for Improved UAV Control and Performance,” Int. J. Mech. Aerospace, Ind. Mechatronics Eng., vol. 8, no. 7, pp. 1281–1286, 2014. [35] E. Kaygan and A. Gatto, “Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance,” Int. J. Aerosp. Mech. Eng., vol. 9, no. 7, pp. 1127–1133, 2015. [36] E. Kaygan and A. Gatto, “Development of an Active Morphing Wing With Adaptive Skin for Enhanced Aircraft Control and Performance,” in Greener Aviation 2016, 2016, no. October. [37] E. and Kaygan and A. Gatto, “Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance,” vol. 12, no. 10, pp. 948–955, 2018. [38] A. Gatto and E. Kaygan, “BLADE OR WING,” WO/2018/046936. [39] C. Thill, J. Etches, I. Bond, K. Potter, and P. Weaver, “Morphing skins,” no. 3216, pp. 1–23, 2008. [40] Airbus S.A.S., “Aircraft Characteristics Airport and Maintenance Planning (A330-300/-800),” France, 2018. [41] H. H. Açıkel, “An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers,” Exp. Therm. Fluid Sci., vol. 39, pp. 252–264, 2012. [42] M. Drela and H. Youngren, “Project 4 – Aircraft Aerodynamic Characteristics,” pp. 1–7. [43] C. E. Lan, “A quasi-vortex-lattice method in thin wing theory,” vol. 11, no. 9, 1974. [44] P. G. Saffman, Vortex Dynamics Cambridge. England, U.K.: Cambridge Univ. Press, 1992. [45] W. F. Phillips, “Lifting-Line Analysis for Twisted Wings and Washout-Optimized Wings,” J. Aircr., vol. 41, no. 1, pp. 128–136, 2004. [46] D. D. Smith, M. H. Lowenberg, D. P. Jones, and M. I. Friswell, “Computational and Experimental Validation of the Active Morphing Wing,” J. Aircr., vol. 51, no. 3, pp. 925–937, May 2014. [47] P. Bourdin, A. . Gatto, and M. Friswell, “The Application of Variable Cant Angle Winglets for Morphing Aircraft Control,” in 24th Applied Aerodynamics Conference, 2006, no. June, pp. 1–13. [48] A. Bolonkin and G. Gilyard, “Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft,” Tech. Memo. NASA Dryden Flight Res. Cent., no. October 1999, 2018. [49] Q. Wang, Y. Chen, and H. Tang, “Mechanism Design for Aircraft Morphing Wing,” 53rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. AIAA/ASME/AHS Adapt. Struct. Conf. AIAA, no. October, 2012. [50] M. Sanguineti and K. Wittkowski, “V ariable cant angle winglets for improvement of aircraft flight performance,” no. July, 2019.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3