Translation of Sentence Lampung-Indonesian Languages with Neural Machine Translation Attention Based Approach

Author:

Abidin Zaenal

Abstract

In this research, automatically Lampung language translation into the Indonesian language was using neural machine translation (NMT) attention based approach. NMT, a new approach method in machine translation technology, that has worked by combining the encoder and decoder. The encoder in NMT is a recurrent neural network component that encrypts the source language to several length-stable vectors and the decoder is a recurrent neural networks component that generates translation result comprehensive. NMT Research has begun with creating a pair of 3000 parallel sentences of Lampung language (api dialect) and Indonesian language. Then it continues to decide the NMT parameter model for the data training process. The next step is building NMT model and evaluate it. The testing of this approach has used 25 single sentences without out-of-vocabulary (OOV), 25 single sentences with OOV, 25 plural sentences without OOV, and 25 plural sentences with OOV. The testing translation result using NMT attention shows the bilingual evaluation understudy (BLEU) an average value is 51, 96 %.

Publisher

Balitbangda Provinsi Lampung

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Indonesian-Kailinese Machine Translation;2023 International Conference on Data Science and Its Applications (ICoDSA);2023-08-09

2. Translation of the Lampung Language Text Dialect of Nyo into the Indonesian Language with DMT and SMT Approach;INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi;2021-02-01

3. Effect of mono corpus quantity on statistical machine translation Indonesian – Lampung dialect of nyo;Journal of Physics: Conference Series;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3