Author:
Abidin Z,Permata ,Ahmad I,Rusliyawati
Abstract
Abstract
Lampung Province is located on the island of Sumatera. For the immigrants in Lampung, they have difficulty in communicating with the indigenous people of Lampung. As an alternative, both immigrants and the indigenous people of Lampung speak Indonesian. This research aims to build a language model from Indonesian language and a translation model from the Lampung language dialect of nyo, both models will be combined in a Moses decoder. This research focuses on observing the effect of adding mono corpus to the experimental statistical machine translation of Indonesian - Lampung dialect of nyo. This research uses 3000 pair parallel corpus in Indonesia language and Lampung language dialect of nyo as source language and uses 3000 mono corpus sentences in Lampung language dialect of nyo as target language. The results showed that the accuracy value in bilingual evalution under-study score when using 1000 sentences, 2000 sentences, 3000 sentences mono corpus show the accuracy value of the bilingual evaluation under-study, respectively, namely 40.97 %, 41.80 % and 45.26 %.
Subject
General Physics and Astronomy
Reference15 articles.
1. Distribusi Verba Berfrefiks (N-) Pada Bahasa Lampung dalam Kitab Kuntara Raja Niti dan Buku Ajar. Ranah: Jurnal Kajian Bahasa 3;Ariyani;Ranah J. Kaji. Bhs.,2014
2. Penerapan Neural Machine Translation untuk Eksperimen Peneijemahan secara Otomatis pada Bahasa Lampung – Indonesia;Abidin;Pros. Semin. Nas. Metod. Kuantitatif 2017,2017
3. Penerjemahan Kalimat Bahasa Lampung-Indonesia Dengan Pendekatan Neural Machine Translation Berbasis Attention Translation of Sentence Lampung-Indonesian Languages With Neural Machine Translation Attention Based;Abidin;J. Kelitbangan,2018
4. Statistical Machine Translation Pada Bahasa Lampung Dialek Api Ke Bahasa Indonesia;Permata;Media Inform. Budidarma,2020
5. Eksperimen Pengenalan Ucapan Aksara Lampung Dengan CMU Sphinx 4;Ningsih;J. Teknoinfo,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献