Epithelial Basement Membrane Regeneration After PRK-Induced Epithelial-Stromal Injury in Rabbits: Fibrotic Versus Non-fibrotic Corneal Healing

Author:

de Oliveira Rodrigo Carlos,Sampaio Lycia Pedral,Shiju Thomas Michael,Santhiago Marcony R.,Wilson Steven E.

Abstract

PURPOSE: To study epithelial basement membrane (EBM) regeneration in non-fibrotic and fibrotic corneas after photorefractive keratectomy (PRK). METHODS: Rabbits (120 total) had either epithelial scrape alone, −4.50 diopters (D) PRK, −9.00 D PRK, or no surgery. Immunohistochemistry was performed on cryofixed corneas at time points from unwounded to 8 weeks (four corneas at each time point in each group). Multiplex immunohistochemistry was performed for EBM components, including collagen type IV, laminin beta-3, laminin alpha-5, perlecan, and nidogen-1. Stromal cellular composition was studied by triplex immunohistochemistry for keratocan, vimentin, and alpha-smooth muscle actin (SMA). RESULTS: PRK-injured EBM significantly regenerated by 4 days after surgery. However, early TGF-beta–regulating perlecan incorporation into the nascent EBM declined 4 to 7 days after surgery in fibrotic corneas. Non-fibrotic corneas that had fully regenerated EBM (with all five components incorporated into the EBM) were transparent and had few SMA-positive myofibroblasts in the stroma. Conversely, corneas with defective nascent EBM that lacked perlecan developed many anterior stromal myofibroblasts and fibrosis at 3 to 4 weeks after surgery and had large amounts of collagen type IV in the nascent EBM and anterior stroma. Myofibroblasts synthesized perlecan but were incompetent to incorporate the heparin sulfate proteoglycan into the nascent EBM. Corneal transparency was restored over several months even in fibrotic corneas, and this was associated with a return of EBM perlecan, myofibroblast disappearance, and reabsorption of disordered extracellular matrix. CONCLUSIONS: Defective incorporation of perlecan into the regenerating EBM by subepithelial myofibroblasts, and likely their precursor cells, underlies the development and persistence of stromal fibrosis after PRK corneal injury. [ J Refract Surg . 2022;38(1):50–60.]

Publisher

SLACK, Inc.

Subject

Ophthalmology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3