Abstract
This chapter provides an overview of machine learning models and their applications to the science of inland waters. Such models serve a wide range of purposes for science and management: predicting water quality, quantity, or ecological dynamics across space, time, or hypothetical scenarios; vetting and distilling raw data for further modeling or analysis; generating and exploring hypotheses; estimating physically or biologically meaningful parameters for use in further modeling; and revealing patterns in complex, multidimensional data or model outputs. An important research frontier is the injection of limnological knowledge into machine-learning models, which has shown great promise for increasing such models’ accuracy, trustworthiness, and interpretability. Here we describe a few of the most powerful machine learning tools, describe best practices for employing these tools and injecting knowledge guidance, and give examples of their applications to advance understanding of inland waters.
Publisher
California Digital Library (CDL)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献