Identifying Structural Priors in a Hybrid Differentiable Model for Stream Water Temperature Modeling

Author:

Rahmani Farshid1ORCID,Appling Alison2ORCID,Feng Dapeng1ORCID,Lawson Kathryn1ORCID,Shen Chaopeng1ORCID

Affiliation:

1. Civil and Environmental Engineering Pennsylvania State University University Park PA USA

2. U.S. Geological Survey Reston VA USA

Abstract

AbstractAlthough deep learning models for stream temperature (Ts) have recently shown exceptional accuracy, they have limited interpretability and cannot output untrained variables. With hybrid differentiable models, neural networks (NNs) can be connected to physically based equations (called structural priors) to output intermediate variables such as water source fractions (specifying what portion of water is groundwater, subsurface, and surface flow). However, it is unclear if such outputs are physically meaningful when only limited physics is imposed, and if structural priors have enough impacts to be identifiable from data. Here, we tested four alternative structural priors describing basin‐scale water temperature memory and instream heat processes in a differentiable stream temperature model where NNs freely estimate the water source fractions. We evaluated models’ abilities to predict Ts and baseflow ratio. The four priors exhibited noticeably different behaviors in these two metrics and their tradeoffs, with some dominating others. Therefore, the better structural priors can be identified. Moreover, testing different priors yielded valuable insights: having a separate shallow subsurface flow component better matches observations, and a recency‐weighted averaging of past air temperature for calculating source water temperature resulted in better Ts and baseflow prediction than traditionally employed simple averaging. However, we also highlight the limitations when insufficient physical constraints are implemented: the internal variables (water source fractions) may not be adequately constrained by a single target variable (stream temperature) alone. To ensure the physical significance of the internal fluxes, one can either employ multivariate data for model selection, or include more physical processes in the priors.

Funder

U.S. Geological Survey

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3