Adsorption of acid yellow dye 17 on activated carbon prepared from Euterpe oleracea: kinetic and thermodynamic studies

Author:

Lopes Deusimar de OliveiraORCID,Santos Lucas OliveiraORCID,Nascimento Evair DiasORCID,Souza Adriane Damasceno Vieira deORCID,Carvalho Franscico Adriano de OliveiraORCID

Abstract

Environmental pollution has been a point of discussion in the international community and an object of investigation by research groups, which focus on the development of remediation methods. In the current study, the bunch of açaí (Euterpe oleracea) was used as a precursor for the preparation of low-cost activated carbon in order to remove the dye 17 AY 17 from the aqueous solution. The synthesis was carried out at temperatures of 500, 600 and 700 °C, for 2.0 h in a muffle furnace. The kinetic and thermodynamic mechanism of the adsorption process of the acid yellow dye 17, and the effects of pH, contact time and initial concentration were investigated. Activated carbon carbonized at 700 °C had the highest adsorption capacity, about of 99.9% of removal of the AY. The adsorption capacity of AY 17 was slightly pH dependent with a maximum value at pH 2.0. The kinetic data show that the equilibrium time was 200 min, and the adsorption capacity of activated carbon was 99.9% at 50 mg L‒1 and 67.0% at 150 mg L‒1 of adsorbate, suggesting high adsorption capacity of the material, even in the presence of high dye concentration. The adsorption process of AY 17 is described by the pseudo-second order kinetic model, and the experimental adsorption isotherms are adjusted to the Freundlich model, indicating that the adsorption of AY 17 on activated carbon occurs with the formation of multilayers. The present study shows that this low-cost material has great potential for remediation of textile effluents.

Publisher

Research, Society and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3