Biochar‐C‐TETA as a superior adsorbent to acid yellow 17 dye from water: isothermal and kinetic studies

Author:

Eleryan Ahmed1,Hassaan Mohamed A1,Aigbe Uyiosa O2ORCID,Ukhurebor Kingsley E3ORCID,Onyancha Robert B4,Kusuma Heri S5ORCID,El‐Nemr Mohamed A6,Ragab Safaa1,El Nemr Ahmed1ORCID

Affiliation:

1. Environment Division National Institute of Oceanography and Fisheries (NIOF) Alexandria Egypt

2. Department of Mathematics and Physics, Faculty of Applied Sciences Cape Peninsula University of Technology Cape Town South Africa

3. Department of Physics, Faculty of Science Edo State University Uzairue Uzairue Nigeria

4. Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology Technical University of Kenya Nairobi Kenya

5. Department of Chemical Engineering, Faculty of Industrial Technology Universitas Pembangunan Nasionsal Veteran Yogyakarta Sleman Indonesia

6. Department of Chemical Engineering, Faculty of Engineering Minia University Minia Egypt

Abstract

AbstractAdsorbents from local materials with high adsorption capacity (Qm) are strongly needed. In this study, mandarin peels (MP) as a local waste material were refluxed in 80% sulfuric acid (H2SO4) to produce a novel biochar, which was oxidized by boiling in 50% hydrogen perioxide (H2O2) and then aminated via refluxing in tetraacetic acid (TETA) to produce mandarin biochar‐C‐TETA (MBCT). Fourier transform infrared (FTIR), Brunauer–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH), scanning electron microscopy (SEM), energy‐dispersive X‐ray (EDX), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and thermgravimetric analysis (TGA) studied various characterizations of MBCT. The optimal pH for AY17 dye absorption was discovered to be 1.5 using 0.75 g L−1 MBCT, the maximum absorption capacity predicted for the MBCT was 1250 mg g−1. The high new absorption peaks at 1439.89 and 1362.38 cm−1 in MBCT imply that amino groups were successfully generated onto the surface of MBCT due to TETA treatment. The experimental data were examined using the Langmuir (LNR) and Freundlich (FRH) isotherm models. The FRH best explained the experimental MBCT data. The pseudo‐first‐order (PFOM) and pseudo‐second‐order (PSOM) models, intraparticle diffusion (INDM) and film diffusion (FDM) models were applied to calculate the kinetic data. The PFOM rate model ideally defined the absorption of AY17 dye to MBCT with a linear regression coefficient (R2 > 0.99). The key mechanism for absorbing AY17 dye molecules to MBCT was chemisorption, which entails the distribution or exchange of electrons between the absorbent and the dye due to the valency force. According to the findings, the novel MBCT adsorbent had a remarkable adsorption capacity (Qm = 1250 mg g−1) and could be reused without losing its absorption effectiveness. © 2023 Society of Chemical Industry (SCI).

Funder

Science and Technology Development Fund

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3