Monitoring of Immovable Cultural Heritage Implementing 3D and Artificial Intelligence Technologies

Author:

Laužikas Rimvydas,Kuncevičius Albinas,Amilevičius Darius,Žižiūnas Tadas,Šmigelskas Ramūnas

Abstract

Preservation of immovable cultural heritage is one of the main challenges for contemporary society. Nowadays very often organizations responsible for heritage management constantly have to deal with lack of resources, which are crucial for proper heritage preservation, maintaining and protection.The possible solution of these problems could be automated heritage monitoring, based on the 3D and AI technologies. 3D scanning technology is the most accurate method to capture the situation of an evolving cultural heritage object or complex at a given time. As a cultural heritage object or complex is evolving continuously, AI based comparison of two 3D point clouds created at different time allow to reliably trace potential changes. Proposed solution is realized by project financed by Research Council of Lithuania „Automated monitoring of urban heritage implementing 3D technologies”. The first results of the project are presented at this article.

Publisher

Vilnius University Press

Reference43 articles.

1. Aijazi A. K., Checchin P., Trassoudaine L. 2013. Segmentation based classification of 3D urban pointclouds: A super-voxel based approach with evaluation. Remote Sensing, 5 (4), p. 1624-1650. https://doi.org/10.3390/rs5041624

2. Allen G. C., El-Turki A., Hallam K. R., McLaughlin D., Stacey M. 2000. Role of NO2 and SO2 in degradation of limestone. British Corrosion Journal, 35, p. 35-38 [interaktyvus]. Prieiga per internetą: [žiūrėta 2018 m. rugsėjo 14 d.]. https://doi.org/10.1179/000705900101501047

3. Barcelo J. A. 2008. Computational intelligence in archaeology. State of the art. B. Frischer, J. Webb Crawford, D. Koller (eds.) Making History Interactive. Computer Applications and Quantitative Methods in Archaeology (CAA). Proceedings of the 37th International Conference, Williamsburg, Virginia, United States of America, March 22-26, Oxford, p. 11-21.

4. Brock A., Lim Th., Ritchie J. M., Weston N. 2016. Generative and discriminative voxel modeling with convolutional neural networks. 3D Deep Learning Workshop at NIPS 2016, Barcelona, Spain. [interaktyvus]. Prieiga per internetą: [žiūrėta 2020 m. sausio 2 d.].

5. Carroll P., Aarrevaara E. 2018. Review of potential risk factors of cultural heritage sites and initial modelling for adaptation to climate change. Geosciences, 8 (322) [interaktyvus]. Prieiga per internetą: [žiūrėta 2018 m. spalio 1 d.]. https://doi.org/10.20944/preprints201807.0068.v1

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3