Author:
Reinfelds Andrejs,Šteinberga Dzintra
Abstract
We consider the quasilinear dynamic equation in a Banach space on unbounded above and below time scales T with rd-continuous, regressive right-hand side.We define the corresponding Green-type map. Using the integral functional technique, we find a new simpler, but at the same time, more general sufficient condition for the existence of a bounded solution on the time scales expressed in terms of integrals of the Green-type map. We construct previously unknown linear scalar differential equation, which does not possess exponentially dichotomy, but for which the integral of the corresponding Green-type map is uniformly bounded. The existence of such example allows, on the one hand, to obtain the new sufficient condition for the existence of bounded solution and, on the other hand, to prove Hyers–Ulam stability for a much broader class of linear dynamic equations even in the classical case.
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献