Mathematical Modeling of a Bioluminescent E. Coli Based Biosensor

Author:

Rabner A.,Martinez E.,Pedhazur R.,Elad T.,Belkin S.,Shacham Y.

Abstract

In this work we present a mathematical model for the bioreporter activity of an E. coli based bioluminescent bioreporter. This bioreporter is based on a genetically modified E. coli which harbors the recA promoter, a member of the bacterial SOS response, fused to the bacterial luminescence (lux) genes. This bioreporter responds to the presence of DNA damaging agents such as heavy metals, H2O2 and Nalidixic Acid (NA) that activate the SOS response. In our mathematical model we implemented basic physiological mechanisms such as: the penetration of the NA into the biosensor; gyrase enzyme inhibition by the NA; gyrase level regulation; creation of chromosomal DNA damage; DNA repair and release of ssDNA into the cytoplasm; SOS induction and chromosomal DNA repair; activation of lux genes by the fused recA promoter carried on a plasmidal DNA; transcription and translation of the luminescence responsible enzymes; luminescence cycle; energy molecules level regulation and the regulation of the O2 consumption. The mathematical model was defined using a set of ordinary differential equations (ODE) and solved numerically. We simulated the system for different concentrations of NA in water for specific biosensors concentration, and under limited O2 conditions. The simulated results were compared to experimental data and satisfactory matching was obtained. This manuscript presents a proof of concept showing that real biosensors can be modeled and simulated. This sets the ground to the next stage of implementing a comprehensive physiological model using experimentally extracted parameters. Following the completion of the next stage, it will be possible to construct a “Computer Aided Design” tool for the simulation of the genetically engineered biosensors. We define a term “bioCAD” for a Biological System Computer Aided Design. The specific bioCAD that is described here is aimed towards whole cell biosensors which are under investigation today for functional sensing. Usage of the bioCAD will improve the biosensors design process and boost their performance. It will also reduce Non Recurring Engineering (NRE) cost and time. Finally, using a parameterized solution will allow fair and quick evaluation of whole cell biosensors for various applications.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3