Affiliation:
1. Gaziantep İslam Bilim ve Teknoloji Üniversitesi
Abstract
Bitkilerin yetiştirilme süreci zahmetli ve uzun süren bir işlemdir. Bitki yetiştiriciliği ile uğraşan kişilerin en önemli sorunlarından biri bitki hastalığıdır. Hastalıkla mücadelede ilk olarak yapılması gereken hastalığın tanınmasıdır. Hastalığın hızlı bir şekilde tespit edip gereken önlemleri hızlı bir şekilde alabilmek oldukça önemlidir. Çalışmada domates yapraklarındaki hastalık belirlenmesinde derin öğrenme yöntemleri kullanılmıştır. Çalışmada veri seti hastalık olarak 10 sınıftan oluşan toplam 18.160 domates yaprağı görüntüsü bulunmadır. Görüntü hastalık sınıflandırmasında derin evrişimli sinir ağları (ESA) modellerden ön eğitimli ağlar olan GoogleNet, AlexNet, SqueezeNet, ShuffleNet ve ResNet-18 modelleri kullanılmıştır. Modellerde eğitim veri seti %70 eğitim, %15 doğrulama ve %15 test olarak ayrılmıştır. Eğitilen ağların test verisi ile performans ölçütleri doğruluk, kesinlik, özgüllük ve f-skor değerleri hesaplanmıştır. Modellerin doğruluk oranları AlexNet, GoogleNet, ShuffleNet, SqueezeNet ve ResNet-18 için sırasıyla %93.93, %95.18, %94.82, %94.29 ve %81.79 olarak elde edilmiştir. Yapılan analizlere göre ön eğitimli ağların domates yaprağı hastalık sınıflandırma çalışmasında en iyi performans gösteren modelin GoogleNet olduğu görülmüştür.
Publisher
Kahramanmaras Sutcu Imam University Journal of Engineering Sciences
Reference29 articles.
1. Acikgoz, H. (2022). A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting. Applied Energy, (305). doi:https://doi.org/10.1016/j.apenergy.2021.117912.
2. Arivazhagan, S., Shebiah, R. N., Ananthi, S. N., & Varthini, S. V. (2013). Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agricultural Engineering International: The CIGR Journal, 15, 211–217.
3. Arsenovic, M., Karanovic, M., Sladojevic, S., Anderla, A., & Stefanovic, D. (2019). Solving Current Limitations of Deep Learning Based Approaches for Plant Disease Detection. Symmetry, 11(7). doi:10.3390/sym11070939
4. Athanikar, G., & Badar, M. P. (2016). Potato Leaf Diseases Detection and Classification System Mr. Atik, I. (2022a). Classification of Electronic Components Based on Convolutional Neural Network Architecture. Energies, 15(7). doi:10.3390/en15072347
5. Atik, I. (2022b). Performance Comparison of Pre-Trained Convolutional Neural Networks in Flower Image Classification. Avrupa Bilim ve Teknoloji Dergisi, (35), 315–321. doi:10.31590/ejosat.1082023
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献