Comparison of a branched spike wheat with the cultivars Neepawa and HY320 for grain yield and yield components

Author:

Hucl P.,Fowler B. J.

Abstract

Branched-spike spring wheat (Triticum turgidum L.) genotypes are periodically promoted in western Canada as having very high grain yield capacity. These "Miracle" wheats tend to have a low tillering capacity and may require higher plant populations in order to achieve maximum grain yield. This study was conducted to critically evaluate the high-yield claims of a branched-spike wheat (BSW) and to determine whether this cultivar has a higher optimum seeding rate requirement than the spring wheat (Triticum aestivum L.) cultivars Neepawa and HY320. The three cultivars were seeded at rates of 150, 250, 350, 450, and 550 seeds m−2 in each of three experiments: two dryland and one irrigated. Averaged over experiments and seeding rates the BSW yielded 45% less than the conventional cultivars. Significant (P < 0.05) cultivar × experiment cross-overs were detected for spikes m−2, spikelets spike−1, and kernels spike−1. BSW and HY320 switched ranks for spikes m−2, spikelets spike−1 and kernels spike−1 in 1988 and 1989. In 1988, on average, BSW produced 230% as many fertile spikelets as the other cultivars, but 40% fewer spikelets in 1989. Similarly, BSW produced more kernels spike−1 than Neepawa and HY320 in 1988 while the reverse was observed in 1989. The three cultivars responded differently to seeding rate, as indicated by significant (P < 0.01) cultivar × seeding rate interaction for spikelets spike−1 and kernel weight. Neither of these interactions involved significant changes in cultivar rank from one seeding rate to the next. BSW yielded less grain than either Neepawa or HY320, regardless of seeding rate. Attempts to increase the grain yield of a BSW cultivar by manipulating yield components via increased seeding rates were not successful.Key words: Branched-spike, spring wheat, seeding rate, Triticum turgidum L.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3