Feasibility of applying all nitrogen and phosphorus requirements at planting of no-till winter wheat

Author:

Lafond G. P.,Gan Y. T.,Johnston A. M.,Domitruk D.,Stevenson F. C.,Head W. K.

Abstract

The recent advances in no-till seeding technology are providing new N management options for crop production on the prairies. The objectives of this study were to evaluate the potential interaction between P and N fertilizer on winter wheat production in a one-pass seeding and fertilizing system and to determine the feasibility of side-banding all N requirements using urea or anhydrous ammonia at planting as compared with the current practice of broadcasting ammonium nitrate early in the spring. Three forms of N fertilizer (urea, anhydrous ammonia, ammonium nitrate), three rates of N (50, 75 and 100 kg ha–1) and three rates of P (0, 9 and 17 kg P ha–1) were investigated. Urea and anhydrous ammonia were applied during the seeding operation, whereas ammonium nitrate was broadcast the following spring. Applying P fertilizer to the side and below the seed at planting with rates > 9 kg Pha–1 increased grain yield in 3 out of 6 site-years when ammonium nitrate was broadcast early in the spring. The positive yield response to P corresponded to soil test levels of 24 kg P ha–1. With soil test levels greater than 34 kg P ha–1, grain yield response to P fertilizer was not observed. When urea was banded at planting, together with P fertilizer, the yield increases with the increased P rates was shown only in 1 out of 6 site-years. At 5 of th e 6 site-years, grain protein concentration was not affected by P fertilizer; while for 1 site-year, the high rate of P fertilization decreased grain protein concentration. Responses of total grain N and P yields to P fertilization were parallel to the corresponding responses of P fertilization to grain yield, and were rarely associated with N or P concentrations in the grain. Applying N fertilizer at rates of 50 to 100 kg N ha–1 increased winter wheat grain yields by 3 to 8% in 3 out of 6 site-years. The high N rates increased grain protein concentrations in all 6 site-years. Grain protein concentration was 6% greater with N fertilizer applied as ammonium nitrate in early spring than when banding urea or anhydrous ammonia at planting. More consistent improvements in grain yield and grain protein concentration were obtained when the N fertilizer was applied as ammonium nitrate in the spring. Further research is required to determine the benefits of applying some of the crop’s N fertilizer requirements at planting, to reduce the risks of N stresses when the spring application is delayed because of adverse weather or soil conditions. Key words: Ammonium nitrate, anhydrous ammonia, grain yield, nitrogen timing, phosphorus, protein, urea

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3