INFLUENCE OF TEXTURE AND MANAGEMENT PRACTICES ON THE FORMS AND DISTRIBUTION OF SOIL PHOSPHORUS

Author:

STEWART J. W. B.,O'HALLORAN I. P.,KACHANOSKI R. G.

Abstract

Changes in soil phosphorus (P) forms, as determined by a sequential fractionation procedure, were used to assess the influence of soil texture and management practices on the forms and distribution of soil P in a Brown Chernozemic loam soil at Swift Current, Saskatchewan. Significant proportions of the variability of all P fractions except residual-P could be attributed to changes in sand content. Changes in the forms and distribution of soil P with decreasing sand content followed patterns similar to those associated with a weathering sequence. The proportion of total soil P in inorganic and organic extractable forms that were extractable sequentially with anion exchange resin (resin-Pi), sodium bicarbonate (bicarb-Pi and -Po), and sodium hydroxide (NaOH-Pi and -Po) increased with decreasing sand content. Acid-extractable inorganic P (HCl-Pi) was the only P fraction positively correlated with sand content. The presence of a crop increased the proportion of soil P present as the more labile organic-P fractions (bicarb-Po and NaOH-Po) but not as total soil organic P (soil-Po). The presence of a crop also increased the proportion of soil P present as the labile inorganic fractions (resin-Pi and bicarb-Pi), possibly due to a decrease in soil pH. Application of inorganic-P fertilizer caused significant increases in the proportion of soil P as these labile inorganic-P fractions (resin-Pi and bicarb-Pi) and as total soil organic-P (soil-Po), but did not affect the more labile organic-P fractions. Key words: P fractionation, labile P, organic P, inorganic P, texture, management practices

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3