River floodplains as source or sink for fine sediment and total phosphorus export in an agricultural watershed

Author:

Moustakidis Iordanis (Danny) V.12,Schilling Keith E.3,Weber Larry J.4

Affiliation:

1. IIHR‐Hydroscience and Engineering Dept. of Civil and Environmental Engineering University of Iowa Iowa City IA United States

2. Mathematics and Engineering Division Arizona Western College Yuma AZ United States

3. Iowa Dept. Natural Resources Iowa Geological Survey Bureau Iowa City IA United States

4. IIHR‐Hydroscience and Engineering The University of Iowa Iowa City IA United States

Abstract

AbstractFloodplains constitute a vital and integrated component of the riverine network ensuring the connectivity and continuity of the river with the upland watershed areas. However, the sediment trapping efficiency of floodplains has not been well investigated. The purpose of this experimental study was to evaluate the functionality of floodplains to act as either sources or sinks for fine sediments and sediment‐bound nutrients (e.g., total phosphorus) during floods of various return periods. Thus, we hypothesized that (i) soil texture, in terms of topsoil erodibility and (ii) the magnitude of the incoming flood, in terms of the applied shear stress, are the two key parameters govern river floodplains' ability to store or release fine sediments and total phosphorus, during major flood conditions. Topsoil erodibility experiments were coupled with site‐specific flood inundation maps to estimate the eroded fine sediment mass and the total phosphorus release rates per unit area per unit time of each flood condition considered. Results suggested that the floodplain soils of the upstream reaches act as net sources, the floodplains of the midstream reaches have a dual functionality; during low magnitude flood events (up to 10‐year return periods), they act as net sinks, while during higher flood events, they act as sources; and the floodplains of the downstream reaches largely act as sinks. This study results are applicable for watershed managers to identify floodplain areas vulnerable to erosion and sources of nutrient pollution.

Funder

Iowa Nutrient Research Center, College of Agriculture and Life Sciences, Iowa State University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3