Phosphorus use efficiency and long-term trends in soil available phosphorus in wheat production systems with and without nitrogen fertilizer

Author:

Selles F.1,Campbell C. A.2,Zentner R. P.3,Curtin D.4,James D. C.3,Basnyat P.3

Affiliation:

1. Agriculture and Agri-Food Canada, P.O. Box 1000A, Brandon, Manitoba, Canada R7A 5Y3

2. Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, Ontario, Canada K1A 0C6

3. Agriculture and Agri-Food Canada, P.O. Box 1030, Swift Current, Saskatchewan, Canada S9H 3X2

4. New Zealand Institute for Plant and Food Research, Private Bag 4704, Christchurch, New Zealand.

Abstract

Selles, F., Campbell, C. A., Zentner, R. P., Curtin, D., James, D. C. and Basnyat, P. 2011. Phosphorus use efficiency and long-term trends in soil available phosphorus in wheat production systems with and without nitrogen fertilizer. Can. J. Soil Sci. 91: 39–52. Efficient use of phosphorus (P) in crop production is important for economic and environmental reasons, and to prolong the life of a limited resource. Short-term studies often show low recovery of fertilizer P, but P use efficiency may be underestimated because the value of residual P in the soil is ignored. Our objective was to determine fertilizer P use efficiency in two wheat production systems [continuous wheat (CW) and a 3-yr rotation of summer fallow-wheat-wheat (FWW)] using data from a 39-yr study (1967–2005) at Swift Current, SK. Each rotation received either P only (P) or nitrogen plus P (NP) fertilizer. Annual grain P removal was monitored (all straw was returned to the soil) and changes in soil available P (0- to 15-cm layer) were measured by the Olsen bicarbonate method. In 1993, subplots which received no additional P were established to evaluate the residual effect of P fertilizer applied in the preceding 27 yr. Where P was applied each year, grain P removal averaged 54 to 78% of fertilizer P, with values as high as 65 to 109% in 1994 to 2005, the period of lowest water deficit. The P-only treatments removed 13% less P in grain, on average, than NP treatments. In the P-nly systems, Olsen P content increased linearly with time, but in the NP systems it reached a maximum after 20–22 yr and then stabilized. The cumulative P balance (fertilizer P minus P removed in grain) accounted for 60% of the variability in Olsen P accumulation over the course of the experiment. In CW, Olsen P content increased by 0.15 kg ha−1 for each kg ha−1 of P added in excess of crop removal. The rate of Olsen P accumulation was greater (0.20 kg ha−1 for each kg ha−1 of excess fertilizer P) in the FWW rotation possibly due to P mineralization during the summer fallow year. When P was withheld between 1994 and 2005, total grain production in the CW rotation was reduced slightly (by 10%), but there was no significant effect on FWW. Crop P removal (1967–2005) where P was withheld in the final 12 yr was equivalent to 105 and 90% of fertilizer P added to the NP and P-only systems, respectively. We concluded that residual P in prairie soils is retained in forms that are available to plants; wheat crops may therefore recover close to 100% of applied fertilizer P given sufficient time.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3