Quantifying carbon sequestration in a conventionally tilled crop rotation study in southwestern Saskatchewan

Author:

Campbell C A,VandenBygaart A J,Grant B.,Zentner R P,McConkey B G,Lemke R.,Gregorich E G,Fernandez M.

Abstract

In this study we used results from 10 cropping systems in a 37-yr field experiment being conducted on a medium-textured Orthic Brown Chernozem in semiarid southwestern Saskatchewan, in which soil organic carbon (SOC) had been sampled in 7 different years, to quantify trends and changes in SOC in the 0- to 15-cm depth. We tested the effectiveness of three models: Century, the Introductory Carbon Balance Model (ICBM), and the Campbell model to predict the measured values. The 10 cropping systems allowed us to assess the influence of cropping frequency, fertilization and crop type on SOC and, because growing season weather was distinctly more humid in the final 12 yr of the study, we were able to assess the impact of weather. In this soil on which a fallow-wheat (Triticum aestivum L.) (F-W) rotation was maintained for the previous 60 yr, SOC remained fairly constant under normal weather for the first 20 yr of the study for the systems that were frequently fallowed, except for fallow-fall rye (Secale cereale L.)- wheat (F-Rye-W). In contrast, in the final 12 yr, SOC increased in all systems in response to increased C inputs from crop residues associated with improved precipitation. SOC gains were greater for well-fertilized extended crop rotations such as continuous wheat (Cont W) and wheat-lentil (Lens culinaris Medikus) (W-Lent) and the F-Rye-W systems receiving N and P than for the F-W, F-W-W, F-Flax (Linum usitatissimum L.)-W (F-Flx-W) receiving N and P, and Cont W receiving only P. SOC was also greater for well- fertilized than for poorly fertilized systems. The ICBM and Campbell models performed well in simulating SOC trends, partly because they used measured grain yields to estimate C inputs. However, the Century model was less effective in its simulation of SOC especially for the fallow-containing systems due to its difficulty in estimating spring soil water and crop yields. We showed how grain yields can be used, together with coefficients of conversion of C inputs from crop residues to SOC, to estimate SOC changes. Using these relationships, and assuming the coefficient of conversion of C inputs to SOC sequestered is 15% for well-fertilized extended rotations, or 10% for well-fertilized frequently fallowed spring-seeded systems, one can make reasonable first estimates of the impact of management on C sequestration in degraded soils of the semiarid prairies. Key words: ICBM model, Century model, Campbell model, soil organic C, N and P fertilizer, cropping frequency

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3