Soil water use, biomass accumulation and grain yield of no-till winter wheat on the Canadian prairies

Author:

Domitruk D. R.,Duggan B. L.,Fowler D. B.

Abstract

Higher water use efficiency provides no-till-seeded winter wheat with an advantage over spring-sown crops in western Canada. However, like all crops, winter wheat (Triticum aestivum L) is subject to large yield losses due to drought. This study was undertaken to identify the effect of weather and crop soil water status on water use, aboveground biomass production and grain yield of no-till winter wheat grown on the Canadian prairies. Five winter wheat cultivars were grown over a 3-yr period at a total of 17 sites scattered across the different climatic zones of Saskatchewan. Both the establishment and expression of grain yield potential were limited by drought in these dryland environments. Early-season moisture was required to set up a high grain yield potential while low ET and high precipitation during grain filling were necessary to secure yield. Rapid growth under cool temperatures during April and early May consumed much of the available water in the top 50-cm of the soil profile and large ET deficits, as a consequence of a continuous decline in available water, characterized drought stress in most trials. While stored soil water at greenup was not sufficient to support a crop, there was growing season rainfall at all trial sites and improvements in water availability led to higher grain yields and an increased range in mean environmental grain yield. Rainfall had its greatest influence on grain yield during tillering, while atmospheric conditions and soil water content were more important from heading to anthesis. Because environmental differences in drought stress were related to the volume and distribution of growing season precipitation, some dryland environments were exposed to intermittent stress while stress was terminal in others. Therefore, to be successful, winter wheat cultivars and management systems for the Canadian prairies must be able to accommodate variable patterns of growing season water availability. Key words: Triticum aestivum L., evapotranspiration, precipitation, water use, biomass, grain yield

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3