MINERALIZATION RATE CONSTANTS AND THEIR USE FOR ESTIMATING NITROGEN MINERALIZATION IN SOME CANADIAN PRAIRIE SOILS

Author:

CAMPBELL C. A.,JAME Y. W.,WINKLEMAN G. E.

Abstract

There is a need to provide quantitative relationships that will allow agronomists to estimate accurately the nitrogen-supplying power of soils while taking into account both temperature and soil moisture variations. The procedure for estimating net nitrogen mineralization proposed by Stanford and co-workers was used to determine Arrhenius relationships between the rate constants (k) and absolute temperature (°K) for 33 virgin and cultivated Western Canadian prairie surface (0–15 cm) soils. There was no significant difference in Arrhenius relationship between soils within each soil zone; thus, a single average Arrhenius equation was calculated per soil zone. Average Q10 for the Brown chernozemic soils was 2.75, for the Dark Brown, thin Black and thick Black chernozems, 2.18, and for the Gray luvisols, 2.0. These Q10 values are as high or higher than those reported in other parts of the world and may be related to the degree of degradation of the soil organic matter in these various soils. Culture had no marked effect on Q10 but sandy soils had higher Q10 than loams and clays. An equation for estimating net nitrogen mineralization for the Wood Mountain loam (a Brown chernozem) was tested using data from a previous study. The results were quite satisfactory, especially when the test data were derived under laboratory conditions where moisture was well controlled. The temperature functions presented herein can be used together with moisture functions and potentially mineralizable nitrogen results published earlier to make first estimates of net nitrogen mineralized during the growing season in the soils tested. Key words: Q10, Arrhenius relationship, potentially mineralizable nitrogen

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3