Profile Soil Carbon and Nitrogen Dynamics in Typical Chernozem under Long-Term Tillage Use

Author:

Kravchenko YuriyORCID,Yarosh AnnaORCID,Chen Yimin

Abstract

For the first time in research literature, this report presents the seasonal changes of total organic carbon (TOC), total nitrogen (TN), and TOC:TN ratio in Chernozem solum (0–100 cm) as effected by 14 years of application of conventional tillage (CTu), deep reduced tillage (DRTu), and reduced tillage (RTu) under barley growing. During the season, TOC content drastically declined in the spring, increased in the summer, decreased in the middle of August, and recovered in October. TN content was gradually decreased during a crop growing season and renewed in the autumn. A trend of TOC:TN changes (vertical peak curve) in 0–30 cm soil layer varied from TOC (S-shaped curve) and TN (unsymmetrical decayed curve). The amplitude of seasonal TOC and TN changes in deeper layers was far fewer related to the upper horizons. The highest amplitude in 0–30, 30–60 and 60–100 cm layers was under: DRTu, CTu, DRTu—for TOC and DRTu, CTu, RTu—for TN correspondently. Tillage practices differently stratified the content of organic carbon and nitrogen in Chernozem profile. Minimum tillage benefited TOC sequestration in 0–5 and 5–10 cm layers: 24.83 ± 0.64- and 24.65 ± 0.57 g kg−1—under RTu, 24.49 ± 0.62- and 24.71 ± 0.47 g kg−1—under DRTu, while CT—deeper than 20 cm: 22.49–15.03 g kg−1. The vertical distribution of TN content repeated TOC trend. TOC:TN ratio upraised from 12.60 in 0–5 to 14.33 in 80–100 cm layer and was the highest in summertime. A total (0–100 cm) profile was much greater under RTu and DRTu—for TN, and CTu, DRTu—for TOC. The correlation coefficient (r) was almost negligible between TOC and: T (air temperature), P (precipitation) and W (soil moisture). The strong and very strong r was found for TN—W, and P—W pairs. The negative r was between: TOC–P, TN–P, TOC:TN-W, TOC:TN–T and P–W pairs.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3