Nitrogen use efficiency characteristics of commercial potato cultivars

Author:

Zebarth B. J.,Tai G.,Tarn R.,de Jong H.,Milburn P. H.

Abstract

One approach for reducing the contribution of potato (Solanum tuberosum L.) production to nitrate contamination of groundwater is to develop cultivars which utilize N more efficiently. In this study, variation in N use efficiency (NUE; dry matter production per unit crop N supply) characteristics of 20 commercial potato cultivars of North American and European origin were evaluated in 2 yr. Cultivars were grown with or without application of 100 kg N ha-1 as ammonium nitrate banded at planting. The recommended within-row spacing was used for each cultivar and no irrigation was applied. Plant dry matter and N accumulation were determined prior to significant leaf senescence. Crop N supply was estimated as fertilizer N applied plus soil inorganic N measured at planting plus apparent net soil N mineralization. Nitrogen use efficiency decreased curvilinearly with increasing crop N supply. Nitrogen use efficiency was lower for early-maturing cultivars compared to mid-season and late-maturing cultivars. A curvilinear relationship was obtained between plant dry matter accumulation and plant N accumulation using data for all cultivars. Deviations from this relationship were interpreted as variation in N utilization efficiency (NUtE; dry matter accumulation per unit N accumulation). Significant differences in NUtE were measured among cultivars of similar maturity. Nitrogen uptake efficiency (NUpE; plant N content per unit crop N supply) and soil nitrate concentration measured at plant harvest were uniformly low for all cultivars when crop N supply was limited, but varied among cultivars when N was more abundant. This suggests that potato cultivars vary more in terms of N uptake capacity (plant N accumulation in the presence of an abundant N supply) than in terms of NUpE. Key words: Solanum tuberosum, N mineralization, dry matter accumulation, N accumulation, N utilization efficiency

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3