Author:
Bittman S.,Kowalenko C. G.
Abstract
An orchardgrass study in which three rates of N (100, 200 and 400 kg ha−1) each distributed in 1/0/0/0, 0.75/0.25/0/0, 0.50/0.25/0.25/0 and 0.25/0.25/0.25/0.25 proportions prior to four cut intervals examined crude-protein-N and nitrate-N concentrations in grass herbage at each cut in three trials. Crude-protein-N concentration frequently increased to a greater degree and in a different pattern (based on cut) than yield as the rate of N application increased. This showed that crude-protein-N by itself cannot be used as a method for determining the N sufficiency status of grass. Both rate and distribution of fertilizer N strongly influenced plant nitrate-N concentration; the degree of change varied considerably among cuts and trials. Plant nitrate-N concentration in the control did not correspond to yield responsiveness to N application, making it a poor indicator of the plant's need for fertilizer applications. Residual effects of N applications on plant nitrate-N were noted into the last cut of the season from a single spring application. The effect of N rate and distribution, then, was a function of immediate and residual effects of the applications. There was some evidence that N present in the soil in nitrate-N form enhanced the potential for high nitrate-N in the plant. Plant nitrate-N concentrations accounted for up to 29% of the total N in the plant with concentrations greater than 4000 mg N kg−1 at the highest N application rates. Plant nitrate-N did not exceed 1000 mg N kg−1, a concentration considered safe for ruminants, when 75 kg N ha−1 or less ammonium nitrate was applied as a single application prior to a growth interval for all cuts. Since grass protein- and nitrate-N concentrations respond differently than yield to N applications, a specific combination of rate and distribution of fertilizer will not necessarily produce maximum herbage quantity and quality simultaneously. Key words: Crude-protein-N, plant nitrate-N, residual effect, split applications
Publisher
Canadian Science Publishing
Subject
Horticulture,Plant Science,Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献