Temporal dynamics of nitrogen rhizodeposition in field pea as determined by 15N labeling

Author:

Arcand Melissa M.1,Knight J. Diane1,Farrell Richard E.1

Affiliation:

1. Department of Soil Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8

Abstract

Arcand, M. M., Knight, J. D. and Farrell, R. E. 2013. Temporal dynamics of nitrogen rhizodeposition in field pea as determined by 15 N labeling. Can. J. Plant Sci. 93: 941–950. Assessing the contribution of symbiotically fixed N2 to soil from pulse crops necessitates a full accounting of the total crop residue N remaining in the field after seed harvest. Below-ground N, including root and rhizodeposit N, comprises an important component of this total plant N balance – without it the N input to soil is underestimated. Under controlled conditions in a greenhouse, N in intact roots and N rhizodeposition were quantified in field pea (Pisum sativum L.) using the cotton-wick 15N labeling technique. Plants were supplied with 15N on a continuous basis and harvested at the vegetative stage (nine leaves unfolded), flowering, and maturity. As the plants aged, the 15N enrichment in the rhizosphere soil decreased, whereas that in the bulk soil increased, suggesting that N released as root exudates comprised a more important proportion of N rhizodeposition in plants at the early vegetative stage compared with mature plants. In mature plants, N rhizodeposition was comprised predominantly of N associated with root turnover. The contribution of N rhizodeposition recovered in soil to the total plant N balance decreased from 17.8% at the vegetative stage harvest, to 12.3% at flowering, and finally to 7.5% at maturity. However, the total amount of root-derived N released to soil by pea increased with plant development. Below-ground N, including N rhizodeposition and N in intact roots contributed 11.3% to the total plant N balance of mature pea.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3