A Comparison of Different Stomatal Density Phenotypes of Hordeum vulgare under Varied Watering Regimes Reveals Superior Genotypes with Enhanced Drought Tolerance

Author:

Robertson Brittany Clare12,Han Yong123ORCID,Li Chengdao123ORCID

Affiliation:

1. Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia

2. Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia

3. Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia

Abstract

Enhancing the water-use efficiency (WUE) of barley cultivars may safeguard yield deficits during periods of low rainfall. Reduced stomatal density is linked to enhanced WUE, leading to improved drought resistance across plant genera. In this study, 10 barley varieties exhibiting a range of stomatal density phenotypes were grown under differing soil water contents to determine whether stomatal density influences the capacity of genotypes to resist low water availability. The low-stomatal-density genotype Hindmarsh showed the least impact on biomass production during early development, with a 37.13% decrease in dry biomass during drought treatment. Low-stomatal-density genotypes additionally outcompeted high-stomatal-density genotypes under water-deprivation conditions during the reproductive phase of development, exhibiting 19.35% greater wilting resistance and generating 54.62% more heads relative to high-stomatal-density genotypes (p < 0.05). Finally, a correlation analysis revealed a strong negative linear relationship between stomatal density and the traits of head number (r = −0.71) and the number of days until wilting symptoms (r = −0.67) (p < 0.05). The combined results indicate that low-stomatal-density genotypes show promising attributes for high WUE, revealing novel barley varieties that may be useful to future breed improvement for drought tolerance.

Funder

commonwealth government of Australia

GRDC

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3