The effect of long-term fertilization on soil water storage and water deficit in the Black Soil Zone in northeast China

Author:

Zou Wenxiu1,Si Bingcheng2,Han Xiaozeng1,Jiang Heng13

Affiliation:

1. Key Laboratory of Mollisols Agroecology, National Observation Station of Hailun Agroecology System, Northeast Institute of Geography and Agro-ecology, Chinese Academy of Sciences, Harbin 150081, China

2. Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8

3. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

Abstract

Zou, W., Si, B., Han, X. and Jiang, H. 2012. The effect of long-term fertilization on soil water storage and water deficit in the Black Soil Zone in northeast China. Can. J. Soil Sci. 92: 439–448. The Black Soil Zone in northeast China is one of the most important areas of agricultural production in China and plays a crucial role in food supply. However, further improvement in crop yield hinges on effective management of soil water. There is a poor understanding of how different fertilization methods affect crop water use efficiency. The objective of this study was to examine the effect of different fertilization methods on soil water storage and deficit in Black soils. A long-term experiment was conducted at the National Field Research Station of Agro-ecosystems, at Hailun County, Heilongjiang province in northeastern China from 1999 to 2008. Three fertilizer treatments including no fertilizer (CK), inorganic fertilizer (NP) and inorganic fertilizer plus organic material (NPM) were tested. The results showed that soil water storage decreased in the order CK, NP, and NPM during the growing season and the differences in soil water storage in the active root zone (0–70 cm) and below the active root zone (70–130 cm) and soil water deficit were statistically significant among the three treatments. Due to the uneven temporal distribution of rainfall and crop water uptake, soil water content was very dynamic in all three treatments: The low soil water storage and resulting soil water deficit (defined as the monthly difference between potential evapotranspiration and soil available water storage) within the 0- to 70-cm soil profile were found in both June and July. Further, soil receiving NPM was more likely to have a soil water deficit, but less likely to have excessive water. A lower risk of excess water may result in deeper root penetration and increased water use at greater depth, and thus the water deficit under the NPM treatment may not be the limiting factor for crop production. Therefore, NPM seems a viable management practice for improving crop yields in the Black Soil Zone in northeast China, possibly due to higher soil organic carbon and nutrient supply and lower probability of excess water.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3