A framework for selecting and assessing soil quality indicators for sustainable soil management in waste dumps

Author:

Li Yue,Zhao Hongbao,Liu Jiashun,chaonan Chen,Yuxuan Guo

Abstract

AbstractThe primary objective of this study was to develop soil quality indexes (SQIs) to reveal the changes in SQ during the restoration of vegetation in the reclaimed waste dumps of the Hequ open-pit coal mine. The study built an SQI evaluation model for waste dumps based on the soil management assessment framework. The total data set (TDS) consisted of nine physicochemical property indicators. The selection of the minimum data set (MDS) involved the utilization of principal component analysis (PCA) and Norm values. The SQ was comprehensively evaluated for nine indicators, taking into account the non-linear membership function and the improved Nemerow index. The findings suggested a notable disparity in the SQ between the reclaimed area and the unreclaimed area, yet the overall SQ fell short. In the TDS index system, the organic matter has the highest weight and a greater contribution to the soil quality of the waste dumps. In the MDS indicator system, the weights of organic matter and total nitrogen are both 0.5. According to Nemerow index method, the average SQIN of 5 plots is calculated to be 0.4352 ± 0.194. The average value obtained from TDS is 0.581 ± 0.236, and the average value obtained from MDS is 0.602 ± 0.351. The weighted additive method was employed to compute three SQIs, all of which yielded satisfactory outcomes. And the above evaluation methods indicate that the overall soil quality level of the waste dumps is at a moderate level. The sequence of SQ in various waste dumps was as follows: No.4lower > No.1 > No.2 > No.3 > No.4upper. Specifically, the non-linear membership function indicated that pH, available nitrogen (AN), available phosphorus (AP), surface moisture content (SMC), and bulk density (BD) were crucial in limiting SQIs in total waste dumps. The crucial limiting SQIs in unreclaimed areas were total phosphorus (TP) and total nitrogen (TN). This analysis demonstrates its efficacy in formulating strategies for the SQ evaluation and targeted soil reclamation plans of waste dumps.

Funder

Key Laboratory of Ecological Restoration Technology in Abandoned Mining Area of Liaoning

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. Song, Z. L. et al. Impact analysis on mining status and ecological environment in open-pit coal mine. Opencast Min. Technol. 31(9), 1–4 (2016).

2. Zhang, F. W. et al. Development status and tendency of wlrld open-pit coal mine. China Coal 40(11), 113–116 (2014).

3. Sun, S. G. Influence of ecoenvironment and the problem to be solved due to open pit excavation. Energy Environ. Prot. 14(2), 53–54 (2000).

4. Cheng, R. Comprehensive evaluation index system and method of soil quality in mining area. Environ. Ecol. 4(04), 21–27 (2022).

5. Cherubin, M. R. et al. Soil quality evaluation using the soil management assessment framework (smaf) in brazilian oxisols with contrasting texture. Revista Brasileira De Ciencia Do Solo. 41, e0160148 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3