The use of MIXED models in the analysis of animal experiments with repeated measures data

Author:

Wang and L. A. Goonewardene Z.

Abstract

The analysis of data containing repeated observations measured on animals (experimental unit) allocated to different treatments over time is a common design in animal science. Conventionally, repeated measures data were either analyzed as a univariate (split-plot in time) or a multivariate ANOVA (analysis of contrasts), both being handled by the General Linear Model procedure of SAS. In recent times, the mixed model has become more appealing for analyzing repeated data. The objective of this paper is to provide a background understanding of mixed model methodology in a repeated measures analysis and to use balanced steer data from a growth study to illustrate the use of PROC MIXED in the SAS system using five covariance structures. The split-plot in time approach assumes a constant variance and equal correlations (covariance) between repeated measures or compound symmetry, regardless of their proximity in time, and often these assumptions are not true. Recognizing this limitation, the analysis of contrasts was proposed. If there are missing measurements, or some of the data are measured at different times, such data were excluded resulting in inadequate data for a meaningful analysis. The mixed model uses the generalized least squares method, which is generally better than the ordinary least squares used by GLM, if the appropriate covariance structure is adopted. The presence of unequally spaced and/or missing data does not pose a problem for the mixed model. In the example analyzed, the first order ante dependence [ANTE(1)] covariance model had the lowest value for the Akaike and Schwarz’s Bayesian information criteria fit statistics and is therefore the model that provided the best fit to our data. Hence, F values, least square estimates and standard errors based on the ANTE (1) were considered the most appropriate from among the five models demonstrated. It is recommended that the mixed model be used for the analysis of repeated measures designs in animal studies. Key words: Repeated measures, General Linear Model, Mixed Model, split-plot, covariance structure

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3