Net nitrogen mineralization from a Gray Luvisol under diverse cropping systems in the Peace River region of Alberta

Author:

Broersma K.,Juma N. G.,Robertson J. A.

Abstract

Proper management of crops on Gray Luvisols requires knowledge of net soil N mineralization during the growing season. Soil samples from a long-term field experiment at Beaverlodge, Alberta, were used to determine the kinetics of net N mineralization in soil samples from different crop rotations. The cropping systems established in 1968 consisted of (i) continuous barley (Hordeum vulgare L.) (CB); (ii) barley–forage (BF) [bromegrass (Bromus inermis Leyss.) and red clover (Trifolium pratense L.)]; (iii) continuous bromegrass (CG); and (iv) continuous legume (red clover) (CL.). The BF rotation was generally alternated every 3 yr, and each phase of the rotation (BF and BF) was present in every year. Soil samples from each cropping system were sampled to a depth of 15 cm in 1984. Net N mineralized during a 20-wk laboratory incubation at 30 °C and optimum moisture ranged from 32 to 207 mg kg−1 soil and followed the trend BF < CB = CG = BF < CL. The potentially mineralizable N (N0) ranged from 29 to 364 mg kg−1 soil; the mineralization rate constant (k) ranged from 0.04 to 0.26 wk−1; and the ratio of N0 to total N (active fraction) ranged from 1.1 to 11.4%. The net N mineralization rate of CL soil was 10-fold greater than that of the other cropping systems at the end of 20 wk of incubation. This suggests that the CL cropping system provides more N than other cropping systems during the growing season. Results support the observation that forages improve the N-supplying power of Gray Luvisols. Key words: Gray Luvisol, Typic Cryoboralf, N mineralization potential, cropping rotations, active N fraction

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3