Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types

Author:

Gou Xiaomei123ORCID,Reich Peter B.45ORCID,Qiu Liping12,Shao Mingan126,Wei Gehong1,Wang Jingjing1,Wei Xiaorong126ORCID

Affiliation:

1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau Northwest A&F University Yangling Shaanxi China

2. Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences Yangling China

3. University of Chinese Academy of Sciences Beijing China

4. Department of Forest Resources University of Minnesota St. Paul Minnesota USA

5. Institute for Global Change Biology University of Michigan Ann Arbor Michigan USA

6. CAS Center for Excellence in Quaternary Science and Global Change Xi'an Shaanxi China

Abstract

AbstractLeguminous plants are an important component of terrestrial ecosystems and significantly increase soil nitrogen (N) cycling and availability, which affects productivity in most ecosystems. Clarifying whether the effects of legumes on N cycling vary with contrasting ecosystem types and climatic regions is crucial for understanding and predicting ecosystem processes, but these effects are currently unknown. By conducting a global meta‐analysis, we revealed that legumes increased the soil net N mineralization rate (Rmin) by 67%, which was greater than the recently reported increase associated with N deposition (25%). This effect was similar for tropical (53%) and temperate regions (81%) but was significantly greater in grasslands (151%) and forests (74%) than in croplands (−3%) and was greater in in situ incubation (101%) or short‐term experiments (112%) than in laboratory incubation (55%) or long‐term experiments (37%). Legumes significantly influenced the dependence of Rmin on N fertilization and experimental factors. The Rmin was significantly increased by N fertilization in the nonlegume soils, but not in the legume soils. In addition, the effects of mean annual temperature, soil nutrients and experimental duration on Rmin were smaller in the legume soils than in the nonlegume soils. Collectively, our results highlighted the significant positive effects of legumes on soil N cycling, and indicated that the effects of legumes should be elucidated when addressing the response of soils to plants.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3