Active carbon pools and enzyme activities in soils amended with de-inking paper sludge

Author:

Chantigny Martin H.,Angers Denis A.,Beauchamp Chantal J.

Abstract

Application of paper mill wastes generally improves soil organic matter content, biological activity and physical properties. However, the impact of large application rates (>50 Mg ha−1) on soil microflora and their activity has not been assessed. A field study was undertaken on a well-drained clay loam and a poorly drained silty clay loam amended with de-inking paper sludge (DPS) at rates of 0 (control), 50 or 100 Mg ha−1. K2SO4-extractable C (Cext), soil water content (SWC), microbial biomass C (MBC) and different enzyme activity rates were periodically measured in soil during 1075 d following DPS incorporation. Compared with control soils, Cext content increased by 100 to 200%, and soil water content increased by 35% following incorporation of DPS at 100 Mg ha−1. Those differences decreased in time as DPS decomposed. Soil MBC increased proportionally with the rate of DPS amendment and was about twice the amount in soils amended with 100 Mg ha−1 compared with the control. Microbial quotient (ratio of MBC to total soil organic C) was greater in DPS-amended than in control soils until day 370, reflecting the input of labile C from DPS. Compared with the control, fluorescein diacetate hydrolysis and alkaline phosphatase activity rates increased by 40 to 100% when adding 50 Mg DPS ha−1. However, the rates were similar for 50 and 100 Mg DPS ha−1. We concluded that DPS promoted microbial growth and activity in the soil by improving C and water availability. However, levelling off of enzyme activity at a DPS loading rate above 50 Mg ha−1 could reflect changes in soil microbial community, or some kinetic interference or nutrient deficiency induced by excessive C input. Key words: Microbial biomass, active carbon, soil enzyme, paper sludge

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3