Paper mill wastes and biochar improve physiochemical properties and reduce heavy metals leaching risks in podzolic soils

Author:

Farhain Muhammad,Cheema Mumtaz,Nadeem Muhammad,Katanda Yeukai,Thomas Raymond,Javed Bilal,Galagedara LakshmanORCID

Abstract

Abstract Background: The incorporation of industrial wastes, such as wood ash and paper sludge, as soil amendments is vital for both environmental sustainability and agroecosystem productivity. Herein, we evaluated the effects of wood ash and paper sludge alone and in combination with biochar on the physicochemical properties and heavy metal leaching risks in podzolic soils. Methods: The treatments included limestone (control), wood ash, paper sludge, wood ash+paper sludge, limestone+biochar, wood ash+biochar, paper sludge+biochar and wood ash+paper sludge+biochar, arranged in a 4 × 2 factorial design with three replicates. The Hydrus-1D model was employed to simulate the water movement under these soil amendments using leaching colums. Results: Overall, wood ash, paper sludge and biochar application significantly increased the pH of amended soil compared to control. Paper sludge amended treatments alone or in combination with biochar significantly decreased bulk density (8%–17%) and increased the total porosity (14%–25%). While biochar addition to wood ash and paper sludge significantly reduced the concentrations of Cd (by 6.42%), Co (by 10.95%), Cu (by 11.76%), Pb (by 30%) and Ni (by 3.75%) in the collected leachates. The treatment paper sludge + biochar was found to be the most effective treatment to retain the heavy metals, with maximum plant available water (0.28 cm3 cm−3) and field capacity (0.36 cm3 cm−3) compared to control treatment. The predictions from Hydrus-1D showed that paper mill wastes with biochar has a significant potential to increase the volumetric moisture contents of amended podzolic soil, with the simulated leaching times and saturation levels closely aligning with the measured values. Conclusion: paper sludge + biochar treatment showed improved soil physicochemical properties and displayed lower heavy metals than allowed limits to be used in soil. Further, experiments are needed to assess the effects of papermill waste products on podzolic soil properties under variable field conditions.

Funder

Newfoundland and Labrador

Agriculture and Agri-Food Canada

Corner Brook Pulp and Paper Ltd

Atlantic Canada Opportunities Agency

Mitacs

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3