Forecasting sea surface temperature with feed-forward artificial networks in combating the global climate change: The sample of Rize, Türkiye

Author:

Akkan TamerORCID,Mutlu TanjuORCID,Baş ErenORCID

Abstract

The increase of the world population, especially in the global competition, together with the increasing use of fossil fuel resources to meet energy needs, leads to more greenhouse gases (more than one CO2, methane etc.) emissions and the global climate crisis. In this process, changes in meteorological events such as temperature, precipitation, and wind, attract attention moreover but when considered as a whole, we know that these negative changes in the ecosystem negatively affect many living groups. Sea Surface Temperature (SST) as measured meteorologically is the most important environmental parameter where these changes are monitored and observed. It draws attention to the fact that changes in SST are not limited to living organisms as habitats, but also catalyze many chain reactions, especially socio-economic impacts. Therefore, much of the work is devoted to forecasting studies to adapt to changing habitats and take the necessary precautions against potential risks. Feed-forward artificial neural networks have been commonly used to address these emerging needs. Artificial neural networks, which are a simple imitation of the human neurological system, have been used as an artificial intelligence method in forecasting problems due to their superior performance and not having the limitations of classical time series. In this study, the forecasting of the time series of monthly mean SST temperature obtained from Rize station between the years 2010 and 2020 is performed by using feed-forward artificial neural networks, and the forecasting performance of the corresponding time series is compared with many forecasting methods with different characteristics. The comparison of the methods used the mean square error and mean absolute percentage error criteria, which are commonly used in the forecasting literature. The analysis results showed that the analysis results obtained with the feed-forward artificial neural networks have the best prediction performance. As a result, it can be stated that the sea surface temperature can be forecasted with a very high accuracy using the feed-forward artificial neural networks.

Publisher

Ege University Faculty of Fisheries

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3