Abstract
This work proposes a segmentation-free approach to Arabic Handwritten Text Recognition (AHTR): an attention-based Convolutional Neural Network - Recurrent Neural Network - Connectionist Temporal Classification (CNN-RNN-CTC) deep learning architecture. The model receives as input an image and provides, through a CNN, a sequence of essential features, which are transferred to an Attention-based Bidirectional Long Short-Term Memory Network (BLSTM). The BLSTM gives features sequence in order, and the attention mechanism allows the selection of relevant information from the features sequences. The selected information is then fed to the CTC, enabling the loss calculation and the transcription prediction. The contribution lies in extending the CNN by dropout layers, batch normalization, and dropout regularization parameters to prevent over-fitting. The output of the RNN block is passed through an attention mechanism to utilize the most relevant parts of the input sequence in a flexible manner. This solution enhances previous methods by improving the CNN speed and performance and controlling over model over-fitting. The proposed system achieves the best accuracy of 97.1% for the IFN-ENIT Arabic script database, which competes with the current state-of-the-art. It was also tested for the modern English handwriting of the IAM database, and the Character Error Rate of 2.9% is attained, which confirms the model's script independence.
Publisher
Warsaw University of Life Sciences - SGGW Press
Subject
Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software