Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts

Author:

Ahmed Rami,Gogate Mandar,Tahir AhsenORCID,Dashtipour KiaORCID,Al-tamimi Bassam,Hawalah Ahmad,El-Affendi Mohammed A.ORCID,Hussain AmirORCID

Abstract

Offline Arabic Handwriting Recognition (OAHR) has recently become instrumental in the areas of pattern recognition and image processing due to its application in several fields, such as office automation and document processing. However, OAHR continues to face several challenges, including high variability of the Arabic script and its intrinsic characteristics such as cursiveness, ligatures, and diacritics, the unlimited variation in human handwriting, and the lack of large public databases. In this paper, we introduce a novel context-aware model based on deep neural networks to address the challenges of recognizing offline handwritten Arabic text, including isolated digits, characters, and words. Specifically, we propose a supervised Convolutional Neural Network (CNN) model that contextually extracts optimal features and employs batch normalization and dropout regularization parameters. This aims to prevent overfitting and further enhance generalization performance when compared to conventional deep learning models. We employ a number of deep stacked-convolutional layers to design the proposed Deep CNN (DCNN) architecture. The model is extensively evaluated and shown to demonstrate excellent classification accuracy when compared to conventional OAHR approaches on a diverse set of six benchmark databases, including MADBase (Digits), CMATERDB (Digits), HACDB (Characters), SUST-ALT (Digits), SUST-ALT (Characters), and SUST-ALT (Names). A further experimental study is conducted on the benchmark Arabic databases by exploiting transfer learning (TL)-based feature extraction which demonstrates the superiority of our proposed model in relation to state-of-the-art VGGNet-19 and MobileNet pre-trained models. Finally, experiments are conducted to assess comparative generalization capabilities of the models using another language database , specifically the benchmark MNIST English isolated Digits database, which further confirm the superiority of our proposed DCNN model.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3