A methodology for a minimum data set for rare diseases to support national centers of excellence for healthcare and research

Author:

Choquet Rémy12,Maaroufi Meriem12,de Carrara Albane1,Messiaen Claude1,Luigi Emmanuel3,Landais Paul14

Affiliation:

1. BNDMR, Assistance Publique Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France

2. INSERM, U1142, LIMICS, Paris, France

3. Direction Générale de l'Offre de Soins, Ministère de la Santé et de la Solidarité, Paris, France

4. Faculty of Medicine, EA2415, Clinical Research University Institute, Montpellier 1 University and BESPIM, Nîmes University Hospital, France

Abstract

Abstract Background Although rare disease patients make up approximately 6–8% of all patients in Europe, it is often difficult to find the necessary expertise for diagnosis and care and the patient numbers needed for rare disease research. The second French National Plan for Rare Diseases highlighted the necessity for better care coordination and epidemiology for rare diseases. A clinical data standard for normalization and exchange of rare disease patient data was proposed. The original methodology used to build the French national minimum data set (F-MDS-RD) common to the 131 expert rare disease centers is presented. Methods To encourage consensus at a national level for homogeneous data collection at the point of care for rare disease patients, we first identified four national expert groups. We reviewed the scientific literature for rare disease common data elements (CDEs) in order to build the first version of the F-MDS-RD. The French rare disease expert centers validated the data elements (DEs). The resulting F-MDS-RD was reviewed and approved by the National Plan Strategic Committee. It was then represented in an HL7 electronic format to maximize interoperability with electronic health records. Results The F-MDS-RD is composed of 58 DEs in six categories: patient, family history, encounter, condition, medication, and questionnaire. It is HL7 compatible and can use various ontologies for diagnosis or sign encoding. The F-MDS-RD was aligned with other CDE initiatives for rare diseases, thus facilitating potential interconnections between rare disease registries. Conclusions The French F-MDS-RD was defined through national consensus. It can foster better care coordination and facilitate determining rare disease patients’ eligibility for research studies, trials, or cohorts. Since other countries will need to develop their own standards for rare disease data collection, they might benefit from the methods presented here.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3