Abstract
RationaleSpirometry and plethysmography are the gold standard pulmonary function tests (PFT) for diagnosis and management of lung disease. Due to the inaccessibility of plethysmography, spirometry is often used alone but this leads to missed or misdiagnoses as spirometry cannot identify restrictive disease without plethysmography. We aimed to develop a deep learning model to improve interpretation of spirometry alone.MethodsWe built a multilayer perceptron model using full PFTs from 748 patients, interpreted according to international guidelines. Inputs included spirometry (forced vital capacity, forced expiratory volume in 1 s, forced mid-expiratory flow25–75), plethysmography (total lung capacity, residual volume) and biometrics (sex, age, height). The model was developed with 2582 PFTs from 477 patients, randomly divided into training (80%), validation (10%) and test (10%) sets, and refined using 1245 previously unseen PFTs from 271 patients, split 50/50 as validation (136 patients) and test (135 patients) sets. Only one test per patient was used for each of 10 experiments conducted for each input combination. The final model was compared with interpretation of 82 spirometry tests by 6 trained pulmonologists and a decision tree.ResultsAccuracies from the first 477 patients were similar when inputs included biometrics+spirometry+plethysmography (95%±3%) vs biometrics+spirometry (90%±2%). Model refinement with the next 271 patients improved accuracies with biometrics+pirometry (95%±2%) but no change for biometrics+spirometry+plethysmography (95%±2%). The final model significantly outperformed (94.67%±2.63%, p<0.01 for both) interpretation of 82 spirometry tests by the decision tree (75.61%±0.00%) and pulmonologists (66.67%±14.63%).ConclusionsDeep learning improves the diagnostic acumen of spirometry and classifies lung physiology better than pulmonologists with accuracies comparable to full PFTs.
Funder
Lung Health Foundation
Ajmera Foundation Multi-Organ Transplant Innovation Fund
Amgen
University of Toronto Pettit Block Term Grants
CIHR/NSERC Collaborative
Subject
Pulmonary and Respiratory Medicine
Reference28 articles.
1. The measurement of lung volumes using body plethysmography and helium dilution methods in COPD patients: a correlation and diagnosis analysis
2. Asthma control in children: body plethysmography in addition to spirometry;Korten;Pediatr Pulmonol,2019
3. ERS/ATS technical standard on interpretive strategies for routine lung function tests;Stanojevic;Eur Respir J,2022
4. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement
5. Diagnosis and early detection of COPD using spirometry;Johns;J Thorac Dis,2014
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献