Abstract
Background: Linear dimensionality reduction techniques are widely used in many applications. The goal of dimensionality reduction is to eliminate the noise of data and extract the main features of data. Several dimension reduction methods have been developed, such as linear-based principal component analysis (PCA), nonlinear-based t-distributed stochastic neighbor embedding (t-SNE), and deep-learning-based autoencoder (AE). However, PCA only determines the projection direction with the highest variance, t-SNE is sometimes only suitable for visualization, and AE and nonlinear methods discard the linear projection.Results: To retain the linear projection of raw data and generate a better result of dimension reduction either for visualization or downstream analysis, we present neural principal component analysis (nPCA), an unsupervised deep learning approach capable of retaining richer information of raw data as a promising improvement to PCA. To evaluate the performance of the nPCA algorithm, we compare the performance of 10 public datasets and 6 single-cell RNA sequencing (scRNA-seq) datasets of the pancreas, benchmarking our method with other classic linear dimensionality reduction methods.Conclusion: We concluded that the nPCA method is a competitive alternative method for dimensionality reduction tasks.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Unsupervised Anomaly Detection for High-Dimensional Air Quality by Using Autoencoder;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10