Changes in central venous to arterial carbon dioxide gap (PCO2 gap) in response to acute changes in ventilation

Author:

Shastri LishaORCID,Kjærgaard Benedict,Rees Stephen Edward,Thomsen Lars Pilegaard

Abstract

BackgroundEarly diagnosis of shock is a predetermining factor for a good prognosis in intensive care. An elevated central venous to arterial PCO2 difference (∆PCO2) over 0.8 kPa (6 mm Hg) is indicative of low blood flow states. Disturbances around the time of blood sampling could result in inaccurate calculations of ∆PCO2, thereby misrepresenting the patient status. This study aimed to determine the influences of acute changes in ventilation on ∆PCO2 and understand its clinical implications.MethodsTo investigate the isolated effects of changes in ventilation on ∆PCO2, eight pigs were studied in a prospective observational cohort. Arterial and central venous catheters were inserted following anaesthetisation. Baseline ventilator settings were titrated to achieve an EtCO2 of 5±0.5 kPa (VT = 8 mL/kg, Freq = 14 ± 2/min). Blood was sampled simultaneously from both catheters at baseline and 30, 60, 90, 120, 180 and 240 s after a change in ventilation. Pigs were subjected to both hyperventilation and hypoventilation, wherein the respiratory frequency was doubled or halved from baseline. ∆PCO2 changes from baseline were analysed using repeated measures ANOVA with post-hoc analysis using Bonferroni’s correction.Results∆PCO2 at baseline for all pigs was 0.76±0.29 kPa (5.7±2.2 mm Hg). Following hyperventilation, there was a rapid increase in the ∆PCO2, increasing maximally to 1.35±0.29 kPa (10.1±2.2 mm Hg). A corresponding decrease in the ∆PCO2 was seen following hypoventilation, decreasing maximally to 0.23±0.31 kPa (1.7±2.3 mm Hg). These changes were statistically significant from baseline 30 s after the change in ventilation.ConclusionDisturbances around the time of blood sampling can rapidly affect the PCO2, leading to inaccurate calculations of the ∆PCO2, resulting in misinterpretation of patient status. Care should be taken when interpreting blood gases, if there is doubt as to the presence of acute and transient changes in ventilation.

Funder

OBI Medical A/S

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3