Neutrophil extracellular trap-associated carbamylation and histones trigger osteoclast formation in rheumatoid arthritis

Author:

O'Neil Liam J,Oliveira Christopher B,Wang Xinghao,Navarrete Mario,Barrera-Vargas Ana,Merayo-Chalico Javier,Aljahdali Rwan,Aguirre-Aguilar Eduardo,Carlucci PhilipORCID,Kaplan Mariana JORCID,Carmona-Rivera CarmeloORCID

Abstract

ObjectiveNeutrophil infiltration into the synovial joint is a hallmark of rheumatoid arthritis (RA), a disease characterised by progressive bone erosion. However, the mechanisms by which neutrophils participate in bone destruction remain unclear. Carbamylation is a posttranslational modification linked to increased bone erosion in RA and we previously showed that carbamylation is present in RA neutrophil extracellular traps (NETs). However, it remains unclear whether NETs and their carbamylated protein cargo directly promote bone destruction and alter osteoclast biology.MethodsNETs and carbamylated NETs (cNETs) were assessed for their capacity to induce osteoclast formation in CD14+ monocytes. Chemical inhibitors and neutralising antibodies were used to elucidate the pathway by which NETs induce osteoclastogenesis. HLA-DRB1*04:01 mice received intra-articular injection of cNETs for 4 weeks. Joints were isolated and assessed for osteoclast formation. Plasma and synovial fluid samples from patients with RA (n=32) were assessed for the presence of carbamylated histone, and correlations to disease specific outcomes were performed.ResultsWe found that NETs, when cNETs, instruct monocytes to undergo rapid osteoclast formation. NET-mediated osteoclastogenesis appears to depend on Toll-like receptor 4 signalling and NET-associated proteins including histones and neutrophil elastase. In vivo, we identified that the number of osteoclasts increased following immunisation with cNETs in HLA-DRB1*04:01 transgenic mice. Furthermore, carbamylated histones are increased in plasma and synovial fluid from patients with RA and correlate with active bone resorption and inflammatory markers.ConclusionsOur results suggest that NETs have a direct role in RA-associated bone erosion by promoting osteoclast formation.

Funder

Intramural Research Programs

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,Immunology and Allergy,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3