Comparison of the Kane formula with existing formulas for intraocular lens power selection

Author:

Connell Benjamin JORCID,Kane Jack X

Abstract

ObjectiveTo compare the accuracy of a new intraocular lens (IOL) power formula (Kane formula) with existing formulas using IOLMaster, predominantly model 3, biometry (measures variables axial length, keratometry and anterior chamber depth) and optimised lens constants. To compare the accuracy of three new or updated IOL power formulas (Kane, Hill-RBF V.2.0 and Holladay 2 with new axial length adjustment) compared with existing formulas (Olsen, Barrett Universal 2, Haigis, Holladay 1, Hoffer Q, SRK/T).Methods and analysisA single surgeon retrospective case review was performed from patients having uneventful cataract surgery with Acrysof IQ SN60WF IOL implantation over 11 years in a Melbourne private practice. Using optimised lens constants, the predicted refractive outcome for each formula was calculated for each patient. This was compared with the actual refractive outcome to give the prediction error. Eyes were separated into subgroups based on axial length as follows: short (≤22.0 mm), medium (>22.0 to <26.0 mm) and long (≥26.0 mm).ResultsThe study included 846 patients. Over the entire axial length range, the Kane formula had the lowest mean absolute prediction error (p<0.001, all formulas). The mean postoperative difference from intended outcome for the Kane formula was −0.14+0.27×1 (95% LCL −1.52+0.93×43; 95% UCL +0.54+1.03×149). The formula demonstrated the lowest absolute error in the medium axial length range (p<0.001). In the short and long axial length groups, no formula demonstrated a significantly lower absolute mean prediction error.ConclusionUsing three variables (AL, K, ACD), the Kane formula was a more accurate predictor of actual postoperative refraction than the other formulae under investigation. There were not enough eyes of short or long axial length to adequately power statistical comparisons within axial length subgroups.

Publisher

BMJ

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3