Thrombogenicity of flow diverters in an ex vivo shunt model: effect of phosphorylcholine surface modification

Author:

Hagen Matthew WORCID,Girdhar Gaurav,Wainwright John,Hinds Monica T

Abstract

BackgroundFlow diverters offer a promising treatment for cerebral aneurysms. However, they have associated thromboembolic risks, mandating chronic dual antiplatelet therapy (DAPT). Shield Technology is a phosphorylcholine surface modification of the Pipeline Embolization Device (PED) flow diverter, which has shown significant reductions in material thrombogenicity in vitro.ObjectiveTo compare the thrombogenicity of PED, PED with Shield Technology (PED+Shield), and the Flow-Redirection Endoluminal Device (FRED)—with and without single antiplatelet therapy and DAPT—under physiological flow.MethodsAn established non-human primate ex vivo arteriovenous shunt model of stent thrombosis was used. PED, PED+Shield, and FRED were tested without antiplatelet therapy, with acetylsalicylic acid (ASA) monotherapy, and with DAPT. Radiolabeled platelet deposition was quantified over 1 hour for each device and total fibrin deposition was also quantified.ResultsCumulative statistical analysis showed significantly lower platelet deposition on PED compared with FRED. The same statistical model showed significant decreases in platelet deposition when ASA, clopidogrel, or Shield Technology was used. Direct comparisons of device performances within antiplatelet conditions showed consistent significant decreases in platelet accumulation on PED+Shield relative to FRED. PED+Shield showed significant reductions in platelet deposition compared with unmodified PED without antiplatelet therapy and with DAPT. PED accumulated minimal fibrin with and without Shield Technology.ConclusionsIn this preclinical model, we have shown that the Shield Technology phosphorylcholine modification reduces the platelet-specific thrombogenicity of a flow diverter under physiologically relevant flow with and without DAPT. We have further identified increased fibrin-driven thrombogenicity associated with FRED relative to PED.

Publisher

BMJ

Subject

Clinical Neurology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3