Comparison of intra-aneurysmal flow modification using optical flow imaging to evaluate the performance of Evolve and Pipeline flow diverting stents

Author:

Cancelliere Nicole Mariantonia,Nicholson Patrick,Radovanovic Ivan,Mendes Karla Mirella,Orru Emanuele,Krings Timo,Pereira Vitor M

Abstract

BackgroundFlow diverting stent (FDS) devices have revolutionized the treatment of large and complex brain aneurysms, but there is still room for improvement, particularly on the flow diversion properties and technical challenges associated with stent deployment. In this study we compared flow diversion properties between the new generation Surpass Evolve (Stryker) and the Pipeline Flex (Medtronic) devices by quantitatively evaluating intra-aneurysmal flow modification.MethodsAn in vitro experimental set-up was used, consisting of four patient-specific silicone models with internal carotid aneurysms and a circulating hemodynamic simulation system with pulsatile flow. The Evolve and Pipeline stents were deployed across the neck of each aneurysm model, in a randomized fashion, for a total of eight device deployments. A 60 frames/s digital subtraction angiography run was acquired before and after placement of each FDS. An optical flow-analysis method was used to measure intra-aneurysmal flow modification induced by the stent by calculating a mean aneurysm flow amplitude (MAFA) before and after stent placement and computing a ratio.ResultsAverage MAFA ratio values calculated from pre- and post-stent placement were significantly lower after deployment of the Evolve (n=4, mean=0.62±0.09) compared with the Pipeline device (n=4, mean=0.71±0.06) (p=0.03).ConclusionsOur in vitro results show that the Evolve stent had a superior flow diversion effect compared with the Pipeline stent, which—based on clinical evidence—suggest it may promote faster aneurysm occlusion rates in patients.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3