A new set of eyes: development of a novel microangioscope for neurointerventional surgery

Author:

Lazaro TylerORCID,Srinivasan Visish M,Cooper Phillip,Phillips Michael,Garcia Robert,Chen Stephen R,Johnson Jeremiah,Collins Dalis E,Kan Peter

Abstract

BackgroundEndovascular technological advances have revolutionized the field of neurovascular surgery and have become the mainstay of treatment for many cerebrovascular pathologies. Digital subtraction angiography (DSA) is the ’gold standard' for visualization of the vasculature and deployment of endovascular devices. Nonetheless, with recent technological advances in optics, angioscopy has emerged as a potentially important adjunct to DSA. Angioscopy can offer direct visualization of the intracranial vasculature, and direct observation and inspection of device deployment. However, previous iterations of this technology have not been sufficiently miniaturized or practical for modern neurointerventional practice.ObjectiveTo describe the evolution, development, and design of a microangioscope that offers both high-quality direct visualization and the miniaturization necessary to navigate in the small intracranial vessels and provide examples of its potential applications in the diagnosis and treatment of cerebrovascular pathologies using an in vivo porcine model.MethodsIn this proof-of-concept study we introduce a novel microangioscope, designed from coherent fiber bundle technology. The microangioscope is smaller than any previously described angioscope, at 1.7 F, while maintaining high-resolution images. A porcine model is used to demonstrate the resolution of the images in vivo.ResultsVideo recordings of the microangioscope show the versatility of the camera mounted on different microcatheters and its ability to navigate external carotid artery branches. The microangioscope is also shown to be able to resolve the subtle differences between red and white thrombi in a porcine model.ConclusionA new microangioscope, based on miniaturized fiber optic technology, offers a potentially revolutionary way to visualize the intracranial vascular space.

Publisher

BMJ

Subject

Neurology (clinical),General Medicine,Surgery

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3