Small interfering RNA (siRNA)-based therapeutics

Author:

Patterson JacobyORCID

Abstract

In early studies in simple organisms and mammalian cell lines, small interfering RNA (siRNA) molecules were found to allow experimental cleavage of intracellular messenger RNA (mRNA; the transcription product of a cell gene), reducing the levels of the proteins that would otherwise be formed by the action of the mRNA, thereby ‘silencing’ a specific gene. Researchers subsequently assessed the effects of this class of molecule in patients with various genetic conditions (eg, hereditary amyloidosis) that could benefit from reductions in the excessive quantities of harmful proteins (eg, amyloid). Due to the hydrophilic (non-fat-soluble) nature of the molecules, they have been formulated as lipid nanoparticles to aid transport into cells or conjugated to molecules with an ability to target certain cells in the body (eg, hepatocytes) to aid specificity of action. Their intracellular effects may last up to several months before they are broken down and inactivated. As they need to be composed of an exact complementary sequence to be able to cleave the target mRNA, they are thought to have few unwanted effects apart from infusion or injection site reactions. Several siRNA medicines have been licensed and many other products are in development for genetic hepatic, cardiovascular and ocular conditions.

Publisher

BMJ

Subject

Pharmacology (medical),General Medicine

Reference40 articles.

1. The Nobel Prize . The nobel prize in physiology or medicine 2006 [online]. 2006. Available: https://www.nobelprize.org/prizes/medicine/2006/summary/ [Accessed 20 Apr 2023].

2. Therapeutic siRNA: state-of-the-art and future perspectives;Friedrich;BioDrugs,2022

3. Therapeutic siRNA: state of the art;Hu;Signal Transduct Target Ther,2020

4. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans

5. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3