Type 17 immunity promotes the exhaustion of CD8+ T cells in cancer

Author:

Kim Byung-Seok,Kuen Da-Sol,Koh Choong-Hyun,Kim Hyung-Don,Chang Seon Hee,Kim Sehui,Jeon Yoon Kyung,Park Young-Jun,Choi Garam,Kim Jiyeon,Kang Keon Wook,Kim Hye Young,Kang Suk-Jo,Hwang Shin,Shin Eui-Cheol,Kang Chang-Yuil,Dong Chen,Chung YeonseokORCID

Abstract

BackgroundMultiple types of immune cells producing IL-17 are found in the tumor microenvironment. However, their roles in tumor progression and exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs) remain unclear.MethodsTo determine the role of type 17 immunity in tumor, we investigated the growth of B16F10 melanoma and the exhaustion of CD8+ TILs in Il17a−/− mice, Il17aCreR26DTA mice, RORγt inhibitor-treated mice, or their respective control mice. Adoptive transfer of tumor-specific IL-17-producing T cells was performed in B16F10-bearing congenic mice. Anti-CD4 or anti-Ly6G antibodies were used to deplete CD4+ T cells or CD11b+Gr-1hi myeloid cells in vivo, respectively. Correlation between type 17 immunity and T cell exhaustion in human cancer was evaluated by interrogating TCGA dataset.ResultsDepletion of CD4+ T cells promotes the exhaustion of CD8+ T cells with a concomitant increase in IL-17-producing CD8+ T (Tc17) cells in the tumor. Unlike IFN-γ-producing CD8+ T (Tc1) cells, tumor-infiltrating Tc17 cells exhibit CD103+KLRG1IL-7Rαhi tissue resident memory-like phenotypes and are poorly cytolytic. Adoptive transfer of IL-17-producing tumor-specific T cells increases, while depletion of IL-17-producing cells decreases, the frequency of PD-1hiTim3+TOX+ terminally exhausted CD8+ T cells in the tumor. Blockade of IL-17 or RORγt pathway inhibits exhaustion of CD8+ T cells and also delays tumor growth in vivo. Consistent with these results, human TCGA analyses reveal a strong positive correlation between type 17 and CD8+ T cell exhaustion signature gene sets in multiple cancers.ConclusionIL-17-producing cells promote terminal exhaustion of CD8+ T cells and tumor progression in vivo, which can be reversed by blockade of IL-17 or RORγt pathway. These findings unveil a novel role for IL-17-producing cells as tumor-promoting cells facilitating CD8+ T cell exhaustion, and propose type 17 immunity as a promising target for cancer immunotherapy.

Funder

National Research Foundation of Korea

Publisher

BMJ

Subject

Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3