Abstract
BackgroundGranzyme B is a key effector of cytotoxic T lymphocytes (CTLs), and its expression level positively correlates with the response of patients with mesothelioma to immune checkpoint inhibitor immunotherapy. Whether metabolic pathways regulate Gzmb expression in CTLs is incompletely understood.MethodsA tumor-specific CTL and tumor coculture model and a tumor-bearing mouse model were used to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in CTL function and tumor immune evasion. A link between granzyme B expression and patient survival was analyzed in human patients with epithelioid mesothelioma.ResultsMesothelioma cells alone are sufficient to activate tumor-specific CTLs and to enhance aerobic glycolysis to induce a PD-1hi Gzmblo CTL phenotype. However, inhibition of lactate dehydrogenase A, the key enzyme of the aerobic glycolysis pathway, has no significant effect on tumor-induced CTL activation. Tumor cells induce H3K9me3 deposition at the promoter of G6pd, the gene that encodes the rate-limiting enzyme G6PD in the pentose phosphate pathway, to downregulate G6pd expression in tumor-specific CTLs. G6PD activation increases acetyl-coenzyme A (CoA) production to increase H3K9ac deposition at the Gzmb promoter and to increase Gzmb expression in tumor-specific CTLs converting them from a Gzmblo to a Gzmbhi phenotype, thus increasing CTL tumor lytic activity. Activation of G6PD increases Gzmb+ tumor-specific CTLs and suppresses tumor growth in tumor-bearing mice. Consistent with these findings, GZMB expression level was found to correlate with increased survival in patients with epithelioid mesothelioma.ConclusionG6PD is a metabolic checkpoint in tumor-activated CTLs. The H3K9me3/G6PD/acetyl-CoA/H3K9ac/Gzmb pathway is particularly important in CTL activation and immune evasion in epithelioid mesothelioma.
Funder
US Department of Veterans Affairs
National Cancer Institute
Subject
Cancer Research,Pharmacology,Oncology,Molecular Medicine,Immunology,Immunology and Allergy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献