Abstract
BackgroundWhile malignant pleural effusion (MPE) is a common and significant cause of morbidity in patients with cancer, current treatment options are limited. Human heparanase, involved in angiogenesis and metastasis, cleaves heparan sulfate (HS) side chains on the cell surface.AimsTo explore the coagulation milieu in MPE and infectious pleural effusion (IPE) focusing on the involvement of heparanase.MethodsSamples of 30 patients with MPE and 44 patients with IPE were evaluated in comparison to those of 33 patients with transudate pleural effusions, using heparanase ELISA, heparanase procoagulant activity assay, thrombin and factor Xa chromogenic assays and thromboelastography. A cell proliferation assay was performed. EMT-6 breast cancer cells were injected to the pleural cavity of mice. A peptide inhibiting heparanase activity was administered subcutaneously.ResultsLevels of heparanase, factor Xa and thrombin were significantly higher in exudate than transudate. Thromboelastography detected almost no thrombus formation in the whole blood, mainly on MPE addition. This effect was completely reversed by bacterial heparinase. Direct measurement revealed high levels of HS chains in pleural effusions. Higher proliferation was observed in tumour cell lines incubated with exudate than with transudate and it was reduced when bacterial heparinase was added. The tumour size in the pleural cavity of mice treated with the heparanase inhibitor were significantly smaller compared with control (p=0.005).ConclusionsHS chains released by heparanase form an anticoagulant milieu in MPE, preventing local thrombosis and enabling tumour cell proliferation. Inhibition of heparanase might provide a therapeutic option for patients with recurrent MPE.
Subject
Pulmonary and Respiratory Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献