Predicting need for hospital admission in patients with traumatic brain injury or skull fractures identified on CT imaging: a machine learning approach

Author:

Marincowitz CarlORCID,Paton Lewis,Lecky Fiona,Tiffin Paul

Abstract

BackgroundPatients with mild traumatic brain injury on CT scan are routinely admitted for inpatient observation. Only a small proportion of patients require clinical intervention. We recently developed a decision rule using traditional statistical techniques that found neurologically intact patients with isolated simple skull fractures or single bleeds <5 mm with no preinjury antiplatelet or anticoagulant use may be safely discharged from the emergency department. The decision rule achieved a sensitivity of 99.5% (95% CI 98.1% to 99.9%) and specificity of 7.4% (95% CI 6.0% to 9.1%) to clinical deterioration. We aimed to transparently report a machine learning approach to assess if predictive accuracy could be improved.MethodsWe used data from the same retrospective cohort of 1699 initial Glasgow Coma Scale (GCS) 13–15 patients with injuries identified by CT who presented to three English Major Trauma Centres between 2010 and 2017 as in our original study. We assessed the ability of machine learning to predict the same composite outcome measure of deterioration (indicating need for hospital admission). Predictive models were built using gradient boosted decision trees which consisted of an ensemble of decision trees to optimise model performance.ResultsThe final algorithm reported a mean positive predictive value of 29%, mean negative predictive value of 94%, mean area under the curve (C-statistic) of 0.75, mean sensitivity of 99% and mean specificity of 7%. As with logistic regression, GCS, severity and number of brain injuries were found to be important predictors of deterioration.ConclusionWe found no clear advantages over the traditional prediction methods, although the models were, effectively, developed using a smaller data set, due to the need to divide it into training, calibration and validation sets. Future research should focus on developing models that provide clear advantages over existing classical techniques in predicting outcomes in this population.

Funder

"Trauma Audit and Research Network - www.tarn.ac.uk"

FP7 Health

Research Trainees Coordinating Centre

Publisher

BMJ

Subject

Critical Care and Intensive Care Medicine,General Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3