Safety and performance of a suprachoroidal sensor for telemetric measurement of intraocular pressure in the EYEMATE-SC trial

Author:

Szurman Peter,Mansouri Kaweh,Dick H. Burkhard,Mermoud Andre,Hoffmann Esther M,Mackert Marc,Weinreb Robert N,Rao Harsha LaxmanaORCID,Seuthe Anna-MariaORCID

Abstract

AimTo investigate the safety and performance of a telemetric suprachoroidal intraocular pressure (IOP) sensor (EYEMATE-SC) and the accuracy of its IOP measurements in open angle glaucoma (OAG) patients undergoing simultaneous non-penetrating glaucoma surgery (NPGS).MethodsProspective, multicentre, open-label, single-arm, interventional clinical trial. Twenty-four eyes of 24 patients with OAG regularly scheduled for NPGS (canaloplasty or deep sclerectomy) were simultaneously implanted with an EYEMATE-SC sensor. Six-month follow-up on the sensor’s safety and performance as well as on the level of agreement between the EYEMATE-SC measurements and IOP measurements with Goldmann applanation tonometry (GAT).ResultsThe eyes underwent canaloplasty (n=15) or deep sclerectomy (n=9) and achieved successful implantation of the sensor. No device migration, dislocation or serious device-related complications occurred. A total of 367 comparisons were included in the IOP agreement analysis. The overall mean difference between GAT and EYEMATE-SC measurements was 1.31 mm Hg (lower limit of agreement (LoA) 7.55 mm Hg; upper LoA –4.92 mm Hg). The maximum difference of 2.5 mm Hg ±3.96 (LoA 0.30–2.29) was reached on day 10 and continuously improved to an agreement of –0.15 mm Hg ±2.28 (LoA –1.24 to 0.89) after 6 months. Accordingly, the percentage of eyes within an IOP difference of ±5 mm Hg improved from 78% (day 3) to 100% (6 months).ConclusionsAfter 6 months, the EYEMATE-SC sensor was safe and well tolerated, and allowed continual IOP monitoring.Trial registration numberNCT03756662.

Funder

This study received support from Implandata Ophthalmic Products GmbH, Hannover, Germany, which produced and provided the medical devices under investigation.

Publisher

BMJ

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3